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Abstract. A sever thunderstorm is composed of strong convective clouds.
In order to perform a simulation of this type of storms, a very fine-grid
system is necessary to resolve individual convective clouds within a large
domain. Since convective clouds are highly complicated systems of the
cloud dynamics and microphysics, it is required to formulate detailed
cloud physical processes as well as the fluid dynamics. A huge memory
and large-scale parallel computing are necessary for the computation. For
this type of computations, we have developed a cloud resolving numerical
model which was named the Cloud Resolving Storm Simulator (CReSS).
In this paper, we will describe the basic formulations and characteristics
of CReSS in detail. We also show some results of numerical experiments
of storms obtained by a large-scale parallel computation using CReSS.

1 Introduction

A numerical cloud model is indispensable for both understanding cloud and pre-
cipitation and their forecasting. Convective clouds and their organized storms
are highly complicated systems determined by the fluid dynamics and cloud
microphysics. In order to simulate evolution of a convective cloud storm, calcu-
lation should be performed in a large domain with a very high resolution grid
to resolve individual clouds. It is also required to formulate accurately cloud
physical processes as well as the fluid dynamic and thermodynamic processes.
A detailed formulation of cloud physics requires many prognostic variables even
in a bulk method such as cloud, rain, ice, snow, hail and so on. Consequently, a
large-scale parallel computing with a huge memory is necessary for this type of
simulation.

Cloud models have been developed and used for study of cloud dynamics and
cloud microphysics since 1970’s (e.g., Klemp and Wilhelmson, 1978 [1]; Ikawa,
1988 [2]; Ikawa and Saito, 1991 [3]; Xue et al., 1995 [4]; Grell et al., 1994 [5]).
These models employed the non-hydrostatic and compressible equations systems



with a fine-grid system. Since the computation of cloud models was very large,
they have been used for research with a limited domain.

The recent progress in high performance computer, especially a parallel com-
puters is extending the potential of cloud models widely. It enables us to per-
form a simulation of mesoscale storm using a cloud model. For this four years,
we have developed a cloud resolving numerical model which was designed for
parallel computers including “the Earth Simulator”.

The purposes of this study are to develop the cloud resolving model and
its parallel computing to simulate convective clouds and their organized storms.
Thunderstorms which are organization of convective clouds produce many types
of severe weather: heavy rain, hail storm, downburst, tornado and so on. The
simulation of thunderstorms will clarify the characteristics of dynamics and evo-
lution and will contribute to the mesoscale storm prediction.

The cloud resolving model which we are now developing was named “the
Cloud Resolving Storm Simulator (CReSS)”. In this paper, we will describe
the basic formulation and characteristics of CReSS in detail. Some results of
numerical experiments using CReSS will be also presented.

2 Description of CReSS

2.1 Basic Equations and Characteristics

The coordinate system of CReSS is the Cartesian coordinates in horizontal x, y
and a terrain-following curvilinear coordinate in vertical ζ to include the effect
of orography. Using height of the model surface zs(x, y) and top height zt, the
vertical coordinate ζ(x, y, z) is defined as,

ζ (x, y, z) =
zt[z − zs (x, y)]
zt − zs (x, y)

. (1)

If we use a vertically stretching grid, the effect will be included in (1). Com-
putation of CReSS is performed in the rectangular linear coordinate transformed
from the curvilinear coordinate. The transformed velocity vector will be

U = u, (2)
V = v, (3)

W = (uJ31 + vJ32 + w)
/
G

1
2 . (4)

where variable components of the transform matrix are defined as

J31 = − ∂z

∂x
=

(
ζ

zt
− 1

)
∂zs (x, y)

∂x
(5)

J32 = −∂z

∂y
=

(
ζ

zt
− 1

)
∂zs (x, y)

∂y
(6)

Jd =
∂z

∂ζ
= 1 − zs (x, y)

zt
(7)



and the Jacobian of the transformation is

G
1
2 = |Jd| = Jd (8)

In this coordinate, the governing equations of dynamics in CReSS will be for-
mulated as follows. The dependent variables of dynamics are three-dimensional
velocity components u, v and w, perturbation pressure p′ and perturbation of po-
tential temperature θ′. For convenience, we use the following variables to express
the equations.

ρ∗ = G
1
2 ρ̄, u∗ = ρ∗u, v∗ = ρ∗v,

w∗ = ρ∗w, W ∗ = ρ∗W, θ∗ = ρ∗θ′.

where ρ̄ is the density of the basic field which is in the hydrostatic balance.
Using these variables, the momentum equations are

∂u∗

∂t
= −

(
u∗ ∂u

∂x
+ v∗

∂u

∂y
+ W ∗ ∂u

∂ζ

)
︸ ︷︷ ︸

[rm]
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∂
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∂
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]
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+ (fsv
∗ − fcw

∗)︸ ︷︷ ︸
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, (9)
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where αDiv∗ is an artificial divergence damping term to suppress acoustic waves,
fs and fc are Coriolis terms, c2s is square of the acoustic wave speed, qv and qx

is mixing ratios of water vapor and hydrometeors, respectively. The equation of
the potential temperature is
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′
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′

∂ζ

)
︸ ︷︷ ︸

[rm]

− ρ̄w
∂θ̄

∂ζ︸ ︷︷ ︸
[gm]

+G
1
2 Turb.θ︸ ︷︷ ︸

[physics]

+ ρ∗Src.θ︸ ︷︷ ︸
[physics]

, (12)

and the pressure equation is
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where Q is diabatic heating, terms of “Turb.” is a physical process of the tur-
bulent mixing and term of “Src.” is source term of potential temperature.

Since the governing equations have no approximation, they will express all
type of waves including the acoustic waves, gravity waves and Rossby waves.
These waves have very wide range of phase speed. The fastest wave is the acous-
tic wave. Although it is unimportant in meteorology, its speed is very large
in comparison with other waves and limits the time increment of integration.
We, therefore, integrate the terms related to the acoustic waves and other terms
with different time increments. In the equations (9)∼(13), [rm] is indicates terms
which are related to rotational mode (the Rossby wave mode), [gm] the diver-
gence mode (gravity wave mode), and [am] the acoustic wave mode, respectively.
Terms of physical processes are indicated by [physics].

2.2 Computational Scheme and Parallel Processing Strategy

In numerical computation, a finite difference method is used for the spatial
discretization. The coordinates are rectangular and dependent variables are set
on a staggered grid: the Arakawa-C grid in horizontal and the Lorenz grid in
vertical (Fig.1). The coordinates x, y and ζ are defined at the faces of the grid
boxes. The velocity components u, v and w are defined at the same points of the
coordinates x, y and ζ, respectively. The metric tensor J31 is evaluated at a half
interval below the u point and J32 at a half interval below the v point. All scalar
variables p′, θ′, qv and qx, the metric tensor Jd and the transform Jacobian are



defined at the center of the grid boxes. In the computation, an averaging operator
is used to evaluate dependent variables at the same points. All output variables
are obtained at the scalar points.
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Fig. 1. Structure of the staggered grid and setting of dependent variables.

As mentioned in the previous sub-section, the governing equation includes
all types of waves and the acoustic waves severely limits the time increment.
In order to avoid this difficulty, CReSS adopted the mode-splitting technique
(Klemp and Wilhelmson, 1978 [1]) for time integration. In this technique, the
terms related to the acoustic waves in (9) ∼ (13) are integrated with a small
time increment ∆τ and all other terms are with a large time increment ∆t.

Δ�t t t +t - Δ�tt +Δ�τ�

Fig. 2. Schematic representation of the mode-splitting time integration method. The
large time step is indicated by the upper large curved arrows with the increment of ∆t
and the small time step by the lower small curved arrows with the increment of ∆τ .

Figure 2 shows a schematic representation of the time integration of the
mode-splitting technique. CReSS has two options in the small time step inte-
gration; one is an explicit time integration both in horizontal and vertical and
the other is explicit in horizontal and implicit in vertical. In the latter option,
p′ and w are solved implicitly by the Crank-Nicolson scheme in vertical. With
respect to the large time step integration, the leap-frog scheme with the Asselin
time filter is used for time integration. In order to remove grid-scale noise, the
second or forth order computational mixing is used.



Fig. 3. Schematic representation of the two-dimensional domain decomposition and
the communication strategy for the parallel computing.

A large three-dimensional computational domain (order of 100 km) is neces-
sary for the simulation of thunderstorm with a very high resolution (order of less
than 1km). For parallel computing of this type of computation, CReSS adopts a
two dimensional domain decomposition in horizontal (Fig.3). Parallel processing
is performed by the Massage Passing Interface (MPI). Communications between
the individual processing elements (PEs) are performed by data exchange of the
outermost two grids.
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Fig. 4. Computation time of parallel processing of a test experiment. The model used
in the test had 67×67×35 grid points and was integrated for 50 steps on HITACHI
SR2201.

The performance of parallel processing of CReSS was tested by a simulation
whose grid size was 67 × 67 × 35 on HITACHI SR2201. With increase of the
number of PEs, the computation time decreased almost linearly (Fig.4). The
efficiency was almost 0.9 or more if the number of PEs was less than 32. When
the number of PEs was 32, the efficiency decreased significantly. Because the
number of grid was too small to use the 32 PEs. The communication between



PEs became relatively large. The results of the test showed a sufficiently high
performance of the parallel computing of CReSS.

2.3 Initial and Boundary Conditions

Several types of initial and boundary conditions are optional in CReSS. For a
numerical experiment, a horizontally uniform initial field provided by a sound-
ing profile will be used with an initial disturbance of a thermal bubble or ran-
dom noise. Optional boundary conditions are rigid wall, periodic, zero normal-
gradient, and wave-radiation type of Orlanski (1976) [6].

CReSS has an option to be nested within a coarse-grid model and performs a
prediction experiment. In this option, the initial field is provided by interpolation
of grid point values and the boundary condition is provided by the coarse-grid
model.

2.4 Physical Processes

Cloud physics is an important physical process. It is formulated by a bulk method
of cold rain which is based on Lin et al. (1983) [7], Cotton et al. (1986) [8],
Murakami (1990) [9], Ikawa and Saito (1991) [3], and Murakami et al. (1994) [10].
The bulk parameterization of cold rain considers water vapor, rain, cloud, ice,
snow, and graupel. Prognostic variables are mixing ratios for water vapor qv,
cloud water qc, rain water qr, cloud ice qi, snow qs and graupel qg. The prognostic
equations of these variables are

∂ρ̄qv

∂t
= Adv.qv + Turb.qv + ρ̄Src.qv (14)

∂ρ̄qx

∂t
= Adv.qx + Turb.qx + ρ̄Src.qx + ρ̄Fall.qx (15)

where qx is the representative mixing ratio of qc, qr, qi, qsandqg, and “Adv.”,
“Turb.” and “Fall.” represent time changes due to advection, turbulent mix-
ing, and fall out, respectively. All sources and sinks of variables are included
in the “Src.” term. The microphysical processes implemented in the model are
described in Fig.5. Radiation of cloud is not included.

Turbulence is also an important physical process in the cloud model. Param-
eterizations of the subgrid-scale eddy motions in CReSS are one-order closure
of the Smagorinsky (1963) [11] and the 1.5 order closer with turbulent kinetic
energy (TKE). In the latter parameterization, the prognostic equation of TKE
will be used.

CReSS implemented the surface process formulated by a bulk method. In
this process, the surface sensible flux HS and latent heat flux LE are formulated
as

HS = −ρaCpCh|Va|(Ta − TG), (16)
LE = −ρaLCh|Va|β [qa − q∗vs(TG)] , (17)
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Fig. 5. Diagram describing of water substances and cloud microphysical processes in
the bulk model.

where “a” indicates the lowest layer of the atmosphere and “G” the surface.
The coefficient of β is the evapotranspiration efficiency and L is the latent heat
of evaporation. The surface temperature of the ground TG is calculated by the
n-layers ground model. The momentum fluxes (τx, τy) are

τx = ρaCm|Va|ua, (18)
τy = ρaCm|Va|va. (19)

The bulk coefficients Ch and Cm are formulated by the scheme of Louis et
al. (1981) [12].

3 Dry Model Experiments

In the development of CReSS, we tested it with respect to several types of
phenomena. In a dry atmosphere, the mountain waves and the Kelvin-Helmholtz
billows were chosen to test CReSS.

The numerical experiment of Kelvin-Helmholtz billows was performed in a
two-dimensional geometry with a grid size of 20 m. The profile of the basic flow
was the hyperbolic tangent type. Stream lines of u and w components (Fig.6)
show a clear cats eye structure of the Kelvin-Helmholtz billows. This result is
very similar to that of Klaassen and Peltier (1985) [13]. The model also simulated
the overturning of potential temperature associated with the billows (Fig.7). This
result shows the model works correctly with a grid size of a few tens meters as
far as in the dry experiment.



Fig. 6. Stream lines of the Kelvin-Helmholtz billow at 240 seconds from the initial
simulated in the two-dimensional geometry.

Fig. 7. Same as Fig.6, but for potential temperature.

In the experiment of mountain waves, we used a horizontal grid size of 400 m
in a three-dimensional geometry. A bell-shaped mountain with a height of 500 m
and with a half-width of 2000 m was placed at the center of the domain. The
basic horizontal flow was 10 m s−1 and the buoyancy frequency was 0.01 s−1.
The result (Fig.8) shows that upward and downwindward propagating mountain
waves developed with time. The mountain waves pass through the downwind
boundary. This result is closely similar to that obtained by other models as well
as that predicted theoretically.

These results of the dry experiments showed that the fluid dynamics part
and the turbulence parameterization of the model worked correctly and realistic
behavior of flow were simulated.



Fig. 8. Vertical velocity at 9000 seconds from the initial obtained by the mountain
wave experiment.

4 Simulation of Tornado within a Supercell

In a simulation experiment of a moist atmosphere, we chose a tornado-producing
supercell observed on 24 September 1999 in the Tokai District of Japan. The
simulation was aiming at resolving the vortex of the tornado within the supercell.

Numerical simulation experiments of a supercell thunderstorm which has a
horizontal scale of several tens kilometers using a cloud model have been per-
formed during the past 20 years (Wilhelmson and Klemp, 1978 [14]; Weisman
and Klemp, 1982, 1984 [15], [16]). Recently, Klemp and Rotunno (1983) [17]
attempted to increase horizontal resolution to simulate a fine structure of a
meso-cyclone within the supercell. It was still difficult to resolve the tornado.
An intense tornado occasionally occurs within the supercell thunderstorm. The
supercell is highly three-dimensional and its horizontal scale is several tens kilo-
meter. A large domain of order of 100 km is necessary to simulate the supercell
using a cloud model. On the other hand, the tornado has a horizontal scale of
a few hundred meters. The simulation of the tornado requires a fine resolution
of horizontal grid spacing of order of 100 m or less. In order to simulate the
supercell and the associated tornado by a cloud model, a huge memory and high
speed CPU are indispensable.

To overcome this difficulty, Wicker and Wilhelmson (1995) [18] used an adap-
tive grid method to simulate tornado-genesis. The grid spacing of the fine mesh



was 120 m. They simulated a genesis of tornadic vorticity. Grasso and Cotton
(1995) [19] also used a two-way nesting procedure of a cloud model and simu-
lated a tornadic vorticity. These simulations used a two-way nesting technique.
Nesting methods include complication of communication between the coarse-
grid model and the fine-mesh model through the boundary. On the contrary, the
present research do not use any nesting methods. We attempted to simulate both
the supercell and the tornado using the uniform grid. In this type of simulation,
no complication of the boundary communication. The computational domain of
the present simulation was about 50 × 50 km and the grid spacing was 100 m.
The integration time was about 2 hours.

The basic field was give by a sounding at Shionomisaki, Japan at 00 UTC, 24
September 1999 (Fig.9). The initial perturbation was given by a warm thermal
bubble placed near the surface. It caused an initial convective cloud.

Fig. 9. Vertical profiles of zonal component (thick line) and meridional component
(thin line) observed at Shionomisaki at 00 UTC, 24 September 1999.

After one hour from the initial time, a quasi-stationary super cell was simu-
lated by CReSS (Fig.10). The hook-shaped precipitation area and the bounded
weak echo region (BWER) which are characteristic features of the supercell were
formed in the simulation. An intense updraft occurred along the surface flank-
ing line. At the central part of BWER or of the updraft, a tornadic vortex was
formed at 90 minutes from the initial time.

The close view of the central part of the vorticity (Fig.11) shows closed con-
tours. The diameter of the vortex is about 500 m and the maximum of vorticity
is about 0.1 s−1. This is considered to be corresponded to the observed tornado.



Fig. 10. Horizontal display at 600 m of the simulated supercell at 5400 seconds from
the initial. Mixing ratio of rain (gray scales, g kg−1), vertical velocity (thick lines,
m s−1), the surface potential temperature at 15 m (thin lines, K) and horizontal velocity
vectors.

The pressure perturbation (Fig.12) also shows closed contours which corresponds
to those of the vorticity. This indicates that the flow of the vortex is in the cy-
clostrophic balance. The vertical cross section of the vortex (Fig.13) shows that
the axis of the vorticity and the associated pressure perturbation is inclined to
the left hand side and extends to a height of 2 km. At the center of the vortex,
the downward extension of cloud is simulated.

While this is a preliminary result of the simulation of the supercell and tor-
nado, some characteristic features of the observation were simulated well. The
important point of this simulation is that both the supercell and the tornado



were simulated in the same grid size. The tornado was produced purely by the
physical processes formulated in the model. A detailed analysis of the simulated
data will provide an important information of the tornado-genesis within the
supercell.

Fig. 11. Close view of the simulated tornado within the supercell. The contour lines
are vorticity (s−1) and the arrows are horizontal velocity. The arrow scale is shown at
the bottom of the figure.

Fig. 12. Same as Fig.11, but for pressure perturbation.



Fig. 13. Vertical cross section of the simulated tornado. Thick lines are vorticity (s−1),
dashed lines are pressure perturbation and arrows are horizontal velocity.

5 Simulation of Squall Line

A squall line is a significant mesoscale convective system. It is usually composed
of an intense convective leading edge and a trailing stratiform region. An in-
tense squall line was observed by three Doppler radars on 16 July 1998 over
the China continent during the intensive field observation of GAME / HUBEX
(the GEWEX Asian Monsoon Experiment / Huaihe River Basin Experiment).
The squall line extended from the northwest to the southeast with a width of
a few tens kilometers and moved northeastward at a speed of 11 m s−1. Radar
observation showed that the squall line consisted of intense convective cells along
the leading edge. Some of cells reached to a height of 17 km. The rear-inflow
was present at a height of 4 km which descended to cause the intense lower-level
convergence at the leading edge. After the squall line passed over the radar sites,
a stratiform precipitation was extending behind the convective leading edge.

The experimental design of the simulation experiment using CReSS is as
follows. Both the horizontal and vertical grid sizes were 300 m within a domain
of 170 km × 120 km. Cloud microphysics was the cold rain type. The boundary
condition was the wave-radiating type. An initial condition was provided by
a dual Doppler analysis and sounding data. The inhomogeneous velocity field
within the storm was determined by the dual Doppler radar analysis directly
while that of outside the storm and thermodynamic field were provided by the
sounding observation. Mixing ratios of rain, snow and graupel were estimated
from the radar reflectivity while mixing ratios of cloud and ice were set to be zero
at the initial. A horizontal cross section of the initial field is shown in Fig.14.



Fig. 14. Horizontal cross section of the initial field at a height of 2.5km at 1033 UTC,
16 July 1998. The color levels mixing ratio of rain (g kg−1). Arrows show the horizontal
velocity obtained by the dual Doppler analysis and sounding.

Fig. 15. Time series of horizontal displays (upper row) and vertical cross sections (lower
row) of the simulated squall line. Color levels indicate total mixing ratio (g kg−1) of
rain, snow and graupel. Contour lines indicate total mixing ratio (0.1, 0.5, 1, 2 g kg−1)
of cloud ice and cloud water. Arrows are horizontal velocity.

The simulated squall line extending from the northwest to the southeast
moved northeastward (Fig.15). The convective reading edge of the simulated



squall line was maintained by the replacement of new convective cells and moved
to the northeast. This is similar to the behavior of the observed squall line. Con-
vective cells reached to a height of about 14 km with large production of graupel
above the melting layer. The rear-inflow was significant as the observation. A
stratiform region extended with time behind the leading edge. Cloud extended
to the southwest to form a cloud cluster.

The result of the simulation experiment showed that CReSS successfully
simulated the development and movement of the squall line.

6 Summary and Future Plans

We are developing the cloud resolving numerical model CReSS for numerical
experiments and simulations of clouds and storms. Parallel computing is in-
dispensable for a large-scale simulations. In this paper, we described the basic
formulations and important characteristics of CReSS. We also showed some re-
sult of the numerical experiments: the Kelvin-Helmholtz billows, the mountain
waves, the tornado within the supercell and the squall line. These results showed
that the CReSS has a capability to simulate thunderstorms and related phenom-
ena.

In the future, we will make CReSS to include detailed cloud microphysical
processes which resolve size distributions of hydrometeors. The parameteriza-
tion of turbulence is another important physical process in cloud. The large
eddy simulation is expected to be used in the model. We will develop CReSS to
enable the two-way nesting within a coarse-grid model for a simulation of a real
weather system. Four-dimensional data assimilation of Doppler radar is also our
next target. Because initial conditions are essential for a simulation of mesoscale
storms.

CReSS is now open for public and any users can download the source code and
documents from the web site at “http://www.tokyo.rist.or.jp/CReSS Fujin” (in
Japanese) and can use for numerical experiments of cloud-related phenomena.
CReSS has been tested on a several computers: HITACHI SR2201, HITACHI
SR8000, Fujitsu VPP5000, NEC SX4. We expect that CReSS will be performed
on the Earth Simulator and make a large-scale parallel computing to simulate a
details of clouds and storms.
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