
Chapter 2

Formulation of the system of basic equa-
tions

The governing equations of CReSSis expressed by the equation of motion which
is Navier-Stokes equation considering the rotation of the earth, the equation of ther-
modynamics, the continuity equation with compression, the equation of water vapor
mixing ratio, the equation of cloud mixing ratio and precipitation particle and the
equation of number density of cloud and precipitation particle. The model is consti-
tuted by the formulation of various physical processes and the formulation of bound-
ary value besides their equations. In this chapter, we collect the formulation of basic
equations in the constitution.

CReSScan adopt the effect of terrain by taking the grid along terrain. In CReSS,
this grid is transformed to the square grid for the calculation. To understand the
model easily, first we describe the case of grid in terrain-excluding coordinates. Sec-
ondly, we describe the transformation of the grid in terrain-following coordinates and
the equations in the case.
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2.1 The basic equations system (in terrain-excluding coordinates)

The independent variables of the model are the space coordinates, x, y, z and time, t. In the equations of
semi-compression adopted in CReSS, the dependent variables which defined as a function of the indepen-
dent variables are horizontal velocity, u, v, vertical velocity, w, deviation from the basic status of potential
temperature, θ′, deviation from the basic status of pressure, p′, mixing ratio of water vapor, qv, mixing
ratio of water contents, qx, and number density of water contents Nx. Here, qx, Nx are for water contents
except water vapor and they are determined how the processes of cloud and precipitation are expressed.
Corresponding to this, the number of time-developing equations are varied. Here, dependent variables of
potential temperature, pressure and density considering water contents and water vapor are fulfilled by
hydrostatic equilibrium,

∂p̄

∂z
= −ρ̄g (2.1)

The relation between the basic states and the deviation from them are given as,

θ = θ̄ + θ′ (2.2)
p = p̄ + p′ (2.3)
ρ = ρ̄ + ρ′ (2.4)

The density is given by the equation of state diagnostically,

ρ =
p

RdT

(
1 − qv

ε + qv

)(
1 + qv +

∑
qx

)
(2.5)

Here, g is the gravity acceleration, ε is the ratio of molecule number between water vapor and dry air and
Rd is gas constant of dry air.

All of the dependent variables except density are described in time-developing equations. In the case
of the terrain-excluding coordinate, the time-developing equations of the dependent variables are given as
follows. In the actual model, these equations are coordinated beside the basic equations which contain
terrain in Section 2.2. The terrain-excluding coordinate is used to understand the basic equations easily
which result in as follows,

Equation of motion

∂ρ̄u

∂t
= −ρ̄

(
u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
− ∂p′

∂x
+ ρ̄ (fsv − fcw) + Turb.u (2.6)

∂ρ̄v

∂t
= −ρ̄

(
u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
− ∂p′

∂y
− fsρ̄u + Turb.v (2.7)

∂ρ̄w

∂t
= −ρ̄

(
u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
− ∂p′

∂z
− ρ̄Buoy.w + fcu + Turb.w (2.8)

Here, fs, fc is Coriolis-parameter and Buoy.w is the term of buoyancy.

Equation of pressure

∂p′

∂t
= −

(
u

∂p′

∂x
+ v

∂p′

∂y
+ w

∂p′

∂z

)
+ ρ̄gw

−ρ̄c2
s

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ ρ̄c2

s

(
1
θ

dθ

dt
− 1

Q

dQ

dt

)
(2.9)
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Here, cs is the speed of sound in atmosphere and Q = 1 + 0.61qv +
∑

qx.

Equation of potential temperature

∂ρ̄θ′

∂t
= −ρ̄

(
u

∂θ′

∂x
+ v

∂θ′

∂y
+ w

∂θ′

∂z

)
− ρ̄w

∂θ̄

∂z
+ Turb.θ + ρ̄Src.θ (2.10)

Equations of water vapor and mixing ratio of wear contents

∂ρ̄qv

∂t
= −ρ̄

(
u

∂qv

∂x
+ v

∂qv

∂y
+ w

∂qv

∂z

)
+ Turb.qv + ρ̄Src.qv (2.11)

∂ρ̄qx

∂t
= −ρ̄

(
u

∂qx

∂x
+ v

∂qx

∂y
+ w

∂qx

∂z

)
+ Turb.qx + ρ̄Src.qx + ρ̄Fall.qx (2.12)

Equation of number density of water contents

∂Nx

∂t
= −ρ̄

[
u

∂

∂x

(
Nx

ρ̄

)
+ v

∂

∂y

(
Nx

ρ̄

)
+ w

∂

∂z

(
Nx

ρ̄

)]

+Turb.
Nx

ρ̄
+ ρ̄Src.

Nx

ρ̄
+ ρ̄Fall.

Nx

ρ̄
(2.13)

The detail of other dependent variables are described in Section 2.2. The term of diffusion in sub-grid
scale Turb.φ which appears except in equation of pressure is described in Chapter ??, and the terms of
generation and disappearance Src.φ and falling Fall.φ which appear in equation of potential temperature
and water contents are described in Chapter 4.

2.2 The basic equations system (in terrain-following coordinates)

2.2.1 General curvilinear coordinates

CReSSadopts the terrain-following coordinate to comprise terrain effect. The basis of this coordinate
system doesn’t necessarily become to orthonormal, while the vector in Cartesian coordinate is expressed by
orthogonal basis. This is categorized in curvilinear coordinate of liner algebra. Here, the basic background
is summarized.

Contravariant components and covariant components

Introducing general linear independent bases (e1, e2, e3), which are neither regular nor orthogonal, facul-
tative vector A is expressed as the linear combination,

A = A1e1 + A2e2 + A3e3 (2.14)

On the other hand, since the inverse bases
(
f1, f2, f3

)
, is defined as

f i · ej = δi
j (2.15)

then, the components are,
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f i · A = Ai (2.16)

Here, Kronecker’s delta is defined as follows,

δi
j =

{
1, i = j
0, i �= j

(2.17)

In the case of orthonormal basis, coordinate components are given by scalar product of basis vector and
facultative vector. In the case of general basis, however, the components must be given by scalar product
of inverse basis vector and facultative vector. Thus components of coordinates for original basis are named
contravariant components and expressed in a superscript. On the other hand, components of coordinates
for inverse basis are named covariant components, expressed in a subscript.

The facultative vector B is expressed by inverse basic vector as

B = B1f1 + B2f2 + B3f3 (2.18)

The solution of scalar product of them becomes

A · B = AiBi (2.19)

Thus, scalar product is expressed easily by the sum of product of components in the relative coordi-
nate when both contravariant and covariant components are used. In the case of orthonormal basis, as
inverse basis becomes same to original basis, there are no difference between contravariant and covariant
components.

A ·B = AiBi (2.20)

Scalar product of facultative vector A and bases (e1, e2, e3) gives covariant components for bases of
vector A, (e1, e2, e3),

Ai = A · ei (2.21)

Next, for bases (e1, e2, e3), 9 scalar product can be made,

Gij = ei · ej (2.22)

This matrix is named metric matrix. Moreover, this is quadratic tensor which is named metric tensor.
Using this, the relationship between contravariant and covariant components is expressed as follows.

Ai = GjiAj (2.23)
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curvilinear coordinates

As a function of Cartesian coordinate, three function F i (x, y, z) which defined at a certain region of a
space is considered. The differentiation of them for (x, y, z) is possible for any number of times.

ξ = F 1 (x, y, z) (2.24)
η = F 2 (x, y, z) (2.25)
ζ = F 3 (x, y, z) (2.26)

(ξ, η, ζ) correlates to the each point in a region P (x, y, z). When this correlation is 1 to 1, it can be said
that curvilinear coordinates is made in a region. Furthermore, the following condition is assumed.

∂ (x, y, z)
∂ (ξ, η, ζ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0 (2.27)

For Cartesian coordinate, vector (e1, e2, e3) is

e1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, e2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂η

∂y

∂η

∂z

∂η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, e3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.28)

Here, vector (e1, e2, e3) is named ’basis’ or ’fundamental vector’ of curvilinear coordinates (ξ, η, ζ). Using
above, facultative vector field A is expressed as the linear combinatio of them.

A = A1e1 + A2e2 + A3e3 (2.29)

Then, Ai is named ’contravariant components’ of curvilinear coordinates (ξ, η, ζ) of vector field A. The
covariant component is mentioned in (2.21). Samely, for the bases (e1, e2, e3), 9 scalar product can be
made.

Gij = ei · ej (2.30)

Matrix Gij is named metric matrix of curvilinear coordinates (ξ, η, ζ). The relationship between con-
travariant and covariant components is given by (2.23).
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2.2.2 Coordinate along terrain

Many cloud models adopt terrain-following coordinate system to consider the effect of terrain. Such
coordinate system are oriented on the special relationship of curvilinear coordinates.

CReSSadopts the terrain-following coordinate as well as NHM and ARPS.

ξ = x (2.31)
η = y (2.32)
ζ = ζ (x, y, z) (2.33)

In this case, velocity vector of Cartesian coordinate can be expressed as well as (2.29) by components
of velocity vector (contravariant components) (U, V, W ) in the terrain-following coordinate.(Ordinally,
(U, V, W ) are contravariant components and they should be expressed in the superscript

(
u1, u2, u3

)
. How-

ever, since it is easy, it is written in this way.)

u = U
∂x

∂ξ
+ V

∂x

∂η
+ W

∂x

∂ζ
(2.34)

v = U
∂y

∂ξ
+ V

∂y

∂η
+ W

∂y

∂ζ
(2.35)

w = U
∂z

∂ξ
+ V

∂z

∂η
+ W

∂z

∂ζ
(2.36)

Since it is assumed that condition (2.27) is realized, the inverse of the velocity vector can be asked by
solving (2.34)∼(2.36) about (U, V, W ).

UG
1
2 = uJyz

ηζ + vJzx
ηζ + wJxy

ηζ (2.37)

V G
1
2 = uJyz

ζξ + vJzx
ζξ + wJxy

ζξ (2.38)

WG
1
2 = uJyz

ξη + vJzx
ξη + wJxy

ξη (2.39)

Here, J is Jacobian. For example, it is defined as

Jyz
ηζ ≡ ∂ (y, z)

∂ (η, ζ)
=

∣∣∣∣∣∣∣∣∣

∂y

∂η

∂y

∂ζ

∂z

∂η

∂z

∂ζ

∣∣∣∣∣∣∣∣∣
(2.40)

G
1
2 is defined as Jacobian of the coordinate conversion between (ξ, η, ζ) and (x, y, z) and expressed as

G
1
2 ≡ ∂ (x, y, z)

∂ (ξ, η, ζ)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.41)
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In the case of terrain-following coordinate defined by (2.31)∼(2.33), Jacobians which appear in (2.37)∼(2.39)
are as follows.

Jyz
ηζ =

∂z

∂ζ
, Jzx

ηζ = 0, Jxy
ηζ = 0,

Jyz
ζξ = 0, Jzx

ζξ =
∂z

∂ζ
, Jxy

ζξ = 0,

Jyz
ξη = −∂z

∂ξ
, Jzx

ξη = −∂z

∂η
, Jxy

ξη = 1

(2.42)

In the case of three-dimension, Jacobian of the coordinate conversion between (ξ, η, ζ) and (x, y, z) is

G
1
2 =

∣∣∣∣∂z

∂ζ

∣∣∣∣ (2.43)

Here, variable components of Jacobian’s components are defined as

J31 ≡ Jyz
ξη = −∂z

∂ξ
(2.44)

J32 ≡ Jzx
ξη = −∂z

∂η
(2.45)

Jd ≡ Jyz
ηζ = Jzx

ζξ =
∂z

∂ζ
(2.46)

and ζ is defined by using the altitude of surface zsfc (x, y) and the height of the region of model ztop,

ζ (x, y, z) =
ztop[z − zsfc (x, y)]
ztop − zsfc (x, y)

(2.47)

or

z (ξ, η, ζ) = zsfc (ξ, η) + ζ

[
1 − zsfc (ξ, η)

ztop

]
(2.48)

In this case, Jacobian’s various components are

J31 = −∂z

∂ξ
=
(

ζ

ztop
− 1
)

∂zsfc (ξ, η)
∂ξ

(2.49)

J32 = −∂z

∂η
=
(

ζ

ztop
− 1
)

∂zsfc (ξ, η)
∂η

(2.50)

Jd =
∂z

∂ζ
= 1 − zsfc (ξ, η)

ztop
(2.51)
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U

Figure 2.1. Terrain-following coordinates and direction of the vector.

Like in this case, when ζ is a monotonically increasing function about z, it is expressed that

G
1
2 = |Jd| = Jd (2.52)

Velocity of the terrain-following coordinate (contravariant velocity) which is given in (2.37)∼(2.39) is
transformed as follows,

U = u (2.53)
V = v (2.54)

W = (uJ31 + vJ32 + w)
/

G
1
2 (2.55)

When the transformation from Cartesian coordinate to the coordinate along terrain is performed using
above relation, the space differential of a various value φ is transformed as follows,

∂φ

∂x
=

1
G

1
2

[
∂

∂ξ
(Jdφ) +

∂

∂ζ
(J31φ)

]
(2.56)

∂φ

∂y
=

1
G

1
2

[
∂

∂η
(Jdφ) +

∂

∂ζ
(J32φ)

]
(2.57)

∂φ

∂z
=

1
G

1
2

∂φ

∂ζ
(2.58)

2.2.3 The basic dynamical equations in terrain-following coordinates

In the coordinates of terrain-following, three factors of dependent variables are separated into the values
of base state and deviations from the values of base state, as well as in those of terrain-excluding. Those
three factors are potential temperature, pressure and density which considered effects of water contents and
water vapor. The values of base state are defined so that those are in hydrostatic balance taken account
of effects of terrain, which balance is

∂ρ̄

∂ζ
= −G

1
2 ρ̄g (2.59)
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To simplify those representation, we use

ρ∗ = G
1
2 ρ̄ (2.60)

and transform each predicted variable as follows:

u∗ = ρ∗u (2.61)
v∗ = ρ∗v (2.62)
w∗ = ρ∗w (2.63)

W ∗ = ρ∗W (2.64)
θ∗ = ρ∗θ′ (2.65)
q∗v = ρ∗qv (2.66)
q∗x = ρ∗qx (2.67)

Using the above, the basic equations system in terrain-excluding coordinates shown in Section 2.1 of
this chapter are transformed in terrain-following coordinates as follows.

Equation of motion

∂u∗

∂t
= −

(
u∗ ∂u

∂ξ
+ v∗ ∂u

∂η
+ W ∗ ∂u

∂ζ

)

−
[

∂

∂ξ
{Jd (p′ − αDiv∗)} +

∂

∂ζ
{J31 (p′ − αDiv∗)}

]
+ (fsv

∗ − fcw
∗) + G

1
2 Turb.u (2.68)

∂v∗

∂t
= −

(
u∗ ∂v

∂ξ
+ v∗ ∂v

∂η
+ W ∗ ∂v

∂ζ

)

−
[

∂

∂η
{Jd (p′ − αDiv∗)} +

∂

∂ζ
{J32 (p′ − αDiv∗)}

]
− fsu

∗ + G
1
2 Turb.v (2.69)

∂w∗

∂t
= −

(
u∗ ∂w

∂ξ
+ v∗ ∂w

∂η
+ W ∗ ∂w

∂ζ

)

− ∂

∂ζ
(p′ − αDiv∗) − ρ∗Buoy.w + fcu

∗ + G
1
2 Turb.w (2.70)

where the buoyancy term Buoy.w is expressed as

Buoy.w = −g
ρ′

ρ̄
= g

(
θ′

θ̄
− p′

ρ̄c2
s

+
q′v

ε + q̄v
− q′v +

∑
qx

1 + q̄v

)
(2.71)

Here q′v is not the deviation from the value of base state but the deviation from the initial value, ε is the
ratio of molecular weight to water vapor and dry air. cs is the speed of sound in air given by

cs =
√

γRdT̄ , γ ≡ Cp /Cv (2.72)

where g is the gravity acceleration T̄ is the temperature of base state and Rd is the gas constant for dry
air. Cp, Cv are the specific heat at constant pressure and the specific heat at constant volume for dry air,
respectively. fs, fc are the Coriolis coefficients:
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fs = 2ω sinϕ (2.73)
fc = 2ω cos ϕ (2.74)

where ω is the angular velocity of the earth and ϕ is the latitude. Furthermore, αDiv∗ shown in the
pressure term is the divergence damping to suppress soundwaves, which is given by

Div∗ =
1

G
1
2

(
∂u∗

∂ξ
+

∂v∗

∂η
+

∂W ∗

∂ζ

)
(2.75)

Equation of pressure

∂G
1
2 p′

∂t
= −

(
G

1
2 u

∂p′

∂ξ
+ G

1
2 v

∂p′

∂η
+ G

1
2 W

∂p′

∂ζ

)
+ G

1
2 ρ̄gw

−ρ̄c2
s

(
∂G

1
2 u

∂ξ
+

∂G
1
2 v

∂η
+

∂G
1
2 W

∂ζ

)
+ G

1
2 ρ̄c2

s

(
1
θ

dθ

dt
− 1

Q

dQ

dt

)
(2.76)

where Q = 1 + 0.61qv +
∑

qx was used.

Equation of potential temperature

∂θ∗

∂t
= −

(
u∗ ∂θ′

∂ξ
+ v∗ ∂θ′

∂η
+ W ∗ ∂θ′

∂ζ

)
− ρ̄w

∂θ̄

∂ζ
+ G

1
2 Turb.θ + ρ∗Src.θ (2.77)

Equations of mixing ratio of water vapor and water contents

∂q∗v
∂t

= −
(

u∗ ∂qv

∂ξ
+ v∗ ∂qv

∂η
+ W ∗ ∂qv

∂ζ

)
+ G

1
2 Turb.qv + ρ∗Src.qv (2.78)

∂q∗x
∂t

= −
(

u∗ ∂qx

∂ξ
+ v∗ ∂qx

∂η
+ W ∗ ∂qx

∂ζ

)
+ G

1
2 Turb.qx + ρ∗Src.qx + ρ∗Fall.qx (2.79)

Equations of number concentration per unit volume

∂G
1
2 Nx

∂t
= −

[
u∗ ∂

∂ξ

(
Nx

ρ̄

)
+ v∗ ∂

∂η

(
Nx

ρ̄

)
+ W ∗ ∂

∂ζ

(
Nx

ρ̄

)]

+G
1
2 Turb.

Nx

ρ̄
+ ρ∗Src.

Nx

ρ̄
+ ρ∗Fall.

Nx

ρ̄
(2.80)

Similar to terrain-excluding, there are prognostic equations of turbulence kinetic energy E in addition to
these equations, which are discussed in Chapter ?? Diffusion of Sub-grid scale. So is the diffusion term of
sub-grid scale Turb.φ shown in those equations. On the other hand, the production or loss term Src.φ and
the falling term Fall.φ, shown in the equations of potential temperature and water contents, are discussed
in Chapter ?? Physical Processes of Clouds and Precipitations.
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2.3 —

map factor

2.3.1

2.2 (x, y, z) 3
(2.27) 0

Gij

2
2

z 3

ξ = ξ(x, y, z) (2.81)
η = η(x, y, z) (2.82)
ζ = ζ(x, y, z) (2.83)

2.2 1 (e1, e2, e3)

ei · ej = δij (2.84)

ds2 = dx2 + dy2 + dx2

ds2 = (h1dξ)2 + (h2dη)2 + (h3dζ)2 (2.85)

hi 1

h1 =

[(
∂x

∂ξ

)2

+
(

∂y

∂ξ

)2

+
(

∂z

∂ξ

)2
] 1

2

(2.86)

h2 =

[(
∂x

∂η

)2

+
(

∂y

∂η

)2

+
(

∂z

∂η

)2
] 1

2

(2.87)
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h3 =

[(
∂x

∂ζ

)2

+
(

∂y

∂ζ

)2

+
(

∂z

∂ζ

)2
] 1

2

(2.88)

ξ η ζ s1, s2, s3

ds1 = h1dξ (2.89)
ds2 = h2dη (2.90)
ds3 = h3dζ (2.91)

(ξ, η, ζ)
φ(ξ, η, ζ)

∇φ =
1
h1

∂φ

∂ξ
e1 +

1
h2

∂φ

∂η
e2 +

1
h3

∂φ

∂ζ
e3 (2.92)

(e1, e2, e3) (ξ, η, ζ)

A = Aξe1 + Aηe2 + Aζe3 (Aξ, Aη, Aζ)
(e1, e2, e3) (ξ, η, ζ) A

∂Aξe1

∂η
= e1

∂Aξ

∂η
+ Aξ ∂e1

∂η
(2.93)

9
∂ei

∂ξi

∂e1

∂ξ
= − 1

h2

∂h1

∂η
e2 − 1

h3

∂h1

∂ζ
e3,

∂e1

∂η
=

1
h1

∂h2

∂ξ
e2,

∂e1

∂ζ
=

1
h1

∂h3

∂ξ
e3,

∂e2

∂ξ
=

1
h2

∂h1

∂η
e1,

∂e2

∂η
= − 1

h3

∂h2

∂ζ
e3 − 1

h1

∂h2

∂ξ
e1,

∂e2

∂ζ
=

1
h2

∂h3

∂η
e3,

∂e3

∂ξ
=

1
h3

∂h1

∂ζ
e1,

∂e3

∂η
=

1
h3

∂h2

∂ζ
e2,

∂e3

∂ζ
= − 1

h1

∂h3

∂ξ
e1 − 1

h2

∂h3

∂η
e2

· · · · ·· (2.94)

A

∇ · A =
1

h1h2h3

[
∂

∂ξ
(h2h3A

ξ) +
∂

∂η
(h3h1A

η) +
∂

∂ζ
(h1h2A

ζ)
]

(2.95)
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∇×A =

∣∣∣∣∣∣∣∣∣∣∣

e1

h2h3

e2

h3h1

e3

h1h2

∂

∂ξ

∂

∂η

∂

∂ζ

h1A
ξ h2A

η h3A
ζ

∣∣∣∣∣∣∣∣∣∣∣
=

e1

h2h3

[
∂
(
h3A

ζ
)

∂η
− ∂ (h2A

η)
∂ζ

]
+

e2

h3h1

[
∂
(
h1A

ξ
)

∂ζ
− ∂

(
h3A

ζ
)

∂ξ

]
+

e3

h1h2

[
∂ (h2A

η)
∂ξ

− ∂
(
h1A

ξ
)

∂η

]

· · · · ·· (2.96)

φ(ξ, η, ζ)

∇2φ =
1

h1h2h3

[
∂

∂ξ

(
h2h3

h1

∂φ

∂ξ

)
+

∂

∂η

(
h3h1

h2

∂φ

∂η

)
+

∂

∂ζ

(
h1h2

h3

∂φ

∂ζ

)]
(2.97)

2.3.2 —

1 1

3 3
(ξ, η) z

(e1, e2, e3)

h1 =
1
m

(2.98)

h2 =
1
n

(2.99)

h3 = 1 (2.100)

m, n

m =
1

a cosφ
(2.101)

n =
1
a

(2.102)

a φ
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P (ξ, η, z) (ξ + dξ, η + dη, z + dz)
ds1, ds2, ds3

ds1 =
dξ

m
(2.103)

ds2 =
dη

n
(2.104)

ds3 = dz (2.105)

∂e1

∂ξ
= −n

∂

∂η

(
1
m

)
e2 − 1

am
e3,

∂e1

∂η
= m

∂

∂ξ

(
1
n

)
e2,

∂e1

∂ζ
= 0,

∂e2

∂ξ
= n

∂

∂η

(
1
m

)
e1,

∂e2

∂η
= − 1

an
e3 − m

∂

∂ξ

(
1
n

)
e1,

∂e2

∂ζ
= 0,

∂e3

∂ξ
=

1
am

e1,
∂e3

∂η
=

1
an

e2,
∂e3

∂ζ
= 0

(2.106)

(2.6) (2.8) (ξ, η, z)

u (ξ, η, z)

u = ue1 + ve2 + we3 (2.107)

(2.103) (2.105)

u =
ds1

ddt
=

1
m

dξ

dt
(2.108)

v =
ds2

ddt
=

1
n

dη

dt
(2.109)

w =
ds3

ddt
=

dz

dt
(2.110)
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d

dt
=

∂

∂t
+

dξ

dt

∂

∂ξ
+

dη

dt

∂

∂η
+

dz

dt

∂

∂z
(2.111)

(2.108) (2.110)

d

dt
=

∂

∂t
+ mu

∂

∂ξ
+ nv

∂

∂η
+ w

∂

∂z
(2.112)

(2.107)

du
dt

=
du

dt
e1 +

dv

dt
e2 +

dw

dt
e3 + u

de1

dt
+ v

de2

dt
+ w

de3

dt
(2.113)

(2.106) (2.112) (2.113)

u
de1

dt
+ v

de2

dt
+ w

de3

dt
= −e1mnv

[
v

∂

∂ξ

(
1
n

)
− u

∂

∂η

(
1
m

)]
+ e1

uw

a

+e2mnu

[
v

∂

∂ξ

(
1
n

)
− u

∂

∂η

(
1
m

)]
+ e1

vw

a
− e3

u2 + v2

a
(2.114)

2Ω (ξ, η, z) (fξ, fη, fz)

2Ω × u =

∣∣∣∣∣∣
e1 e2 e3

2Ωξ 2Ωη 2Ωz

u v w

∣∣∣∣∣∣
= e1(fηw − fzv) + e2(fzu − fξw) + e3(fξv − fηu) (2.115)

(2.92)

∇p′ = m
∂p′

∂ξ
e1 + n

∂p′

∂η
e2 +

∂p′

∂z
e3 (2.116)

(2.6) (2.8)

ρ̄
∂u

∂t
= −ρ̄

(
mu

∂u

∂ξ
+ nv

∂u

∂η
+ w

∂u

∂z

)
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−m
∂p′

∂ξ
+ ρ̄(fηw − fzv) + ρ̄mnv

[
v

∂

∂ξ

(
1
n

)
− u

∂

∂η

(
1
m

)]
− ρ̄

uw

a
+ Turb.u (2.117)

ρ̄
∂v

∂t
= −ρ̄

(
mu

∂v

∂ξ
+ nv

∂v

∂η
+ w

∂v

∂z

)

−n
∂p′

∂η
+ ρ̄(fzu − fξw) − ρ̄mnu

[
v

∂

∂ξ

(
1
n

)
− u

∂

∂η

(
1
m

)]
− ρ̄

vw

a
+ Turb.v (2.118)

ρ̄
∂w

∂t
= −ρ̄

(
mu

∂w

∂ξ
+ nv

∂w

∂η
+ w

∂w

∂z

)

−∂p′

∂z
− ρ̄Buoy.w + ρ̄(fξv − fηu) + ρ̄

u2 + v2

a
+ Turb.w (2.119)

ρ̄ = ρ̄(z) Buoy.w

(2.9) (2.10) (2.11) (2.13)

∂p′

∂t
= −

(
mu

∂p′

∂ξ
+ nv

∂p′

∂η
+ w

∂p′

∂z

)
+ ρ̄gw

−ρ̄c2
s

[
mn

(
∂

∂ξ

u

m
+

∂

∂η

v

n

)
+

∂w

∂z

]
+ ρ̄c2

s

(
1
θ

dθ

dt
− 1

Q

dQ

dt

)
(2.120)

ρ̄
∂θ′

∂t
= −ρ̄

(
mu

∂θ′

∂ξ
+ nv

∂θ′

∂η
+ w

∂θ′

∂z

)
− ρ̄w

∂θ̄

∂z
+ ρ̄Src.θ + Turb.θ (2.121)

ρ̄
∂qv

∂t
= −ρ̄

(
mu

∂qv

∂ξ
+ nv

∂qv

∂η
+ w

∂qv

∂z

)
+ ρ̄Src.qv + Turb.qv (2.122)

ρ̄
∂qx

∂t
= −ρ̄

(
mu

∂qx

∂ξ
+ nv

∂qx

∂η
+ w

∂qx

∂z

)
+ ρ̄Fall.qx + ρ̄Src.qx + Turb.qx (2.123)
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∂Nx

∂t
= −ρ̄

[
mu

∂

∂ξ

(
Nx

ρ̄

)
+ nv

∂

∂η

(
Nx

ρ̄

)
+ w

∂

∂z

(
Nx

ρ̄

)]

+ρ̄Src.
Nx

ρ̄
+ ρ̄Fall.

Nx

ρ̄
+ Turb.

Nx

ρ̄
(2.124)

Turb.φ ??

2.3.3 —

2.2

m, n
map factor

2

(
h1 =

1
m

)
=
(

h2 =
1
n

)
(2.125)

(2.108) (2.110)

d

dt
=

∂

∂t
+

dξ

dt

∂

∂ξ
+

dη

dt

∂

∂η
+

dζ

dt

∂

∂z

=
∂

∂t
+ mu

∂

∂ξ
+ mv

∂

∂η
+ W

∂

∂ζ
(2.126)

W

W =
dζ

dt
= mu

∂ζ

∂ξ
+ mv

∂ζ

∂η
+ w

∂ζ

∂z

=
[
mu

(
−∂z

∂ξ

)
+ mv

(
−∂z

∂η

)
+ w

∂ζ

∂z

]
∂ζ

∂z
(2.127)

=
1

G
1
2

(muJ31 + mvJ32 + w)

φ

m
∂φ

∂ξ
→ m

1
G

1
2

[
∂

∂ξ
(Jdφ) +

∂

∂ζ
(J31φ)

]
(2.128)
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m
∂φ

∂η
→ m

1
G

1
2

[
∂

∂η
(Jdφ) +

∂

∂ζ
(J32φ)

]
(2.129)

∂φ

∂z
→ 1

G
1
2

∂φ

∂ζ
(2.130)

ρ̄
∂u

∂t
= −ρ̄

(
mu

∂u

∂ξ
+ mv

∂u

∂η
+ W

∂u

∂ζ

)
− m

1
G

1
2

[
∂

∂ξ
(Jdp

′) +
∂

∂ζ
(J31p

′)
]

+ρ̄(fηw − fzv) + ρ̄m2v

[
v

∂

∂ξ

(
1
m

)
− u

∂

∂η

(
1
m

)]
− ρ̄

uw

a
+ Turb.u (2.131)

ρ̄
∂v

∂t
= −ρ̄

(
mu

∂v

∂ξ
+ mv

∂v

∂η
+ W

∂v

∂ζ

)
− m

1
G

1
2

[
∂

∂η
(Jdp

′) +
∂

∂ζ
(J32p

′)
]

+ρ̄(fzu − fξw) − ρ̄m2u

[
v

∂

∂ξ

(
1
m

)
− u

∂

∂η

(
1
m

)]
− ρ̄

vw

a
+ Turb.v (2.132)

ρ̄
∂w

∂t
= −ρ̄

(
mu

∂w

∂ξ
+ mv

∂w

∂η
+ W

∂w

∂ζ

)

− 1
G

1
2

∂p′

∂ζ
− ρ̄Buoy.w + ρ̄(fξv − fηu) + ρ̄

u2 + v2

a
+ Turb.w (2.133)

∂p′

∂t
= −

(
mu

∂p′

∂ξ
+ mv

∂p′

∂η
+ W

∂p′

∂ζ

)
+ ρ̄gw

−ρ̄c2
s

1
G

1
2

[
m2

(
∂

∂ξ

G
1
2 u

m
+

∂

∂η

G
1
2 v

m

)
+

∂G
1
2 w

∂ζ

]
+ ρ̄c2

s

(
1
θ

dθ

dt
− 1

Q

dQ

dt

)
(2.134)

ρ̄
∂θ′

∂t
= −ρ̄

(
mu

∂θ′

∂ξ
+ mv

∂θ′

∂η
+ W

∂θ′

∂ζ

)
− ρ̄w

1
G

1
2

∂θ̄

∂ζ
+ ρ̄Src.θ + Turb.θ (2.135)
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ρ̄
∂qv

∂t
= −ρ̄

(
mu

∂qv

∂ξ
+ mv

∂qv

∂η
+ W

∂qv

∂ζ

)
+ ρ̄Src.qv + Turb.qv (2.136)

ρ̄
∂qx

∂t
= −ρ̄

(
mu

∂qx

∂ξ
+ mv

∂qx

∂η
+ W

∂qx

∂ζ

)
+ ρ̄Fall.qx + ρ̄Src.qx + Turb.qx (2.137)

∂Nx

∂t
= −ρ̄

[
mu

∂

∂ξ

(
Nx

ρ̄

)
+ mv

∂

∂η

(
Nx

ρ̄

)
+ W

∂

∂ζ

(
Nx

ρ̄

)]

+ρ̄Src.
Nx

ρ̄
+ ρ̄Fall.

Nx

ρ̄
+ Turb.

Nx

ρ̄
(2.138)

(??) (??)

m2

[
v

∂

∂ξ

(
1
m

)
− u

∂

∂η

(
1
m

)]
= u

∂m

∂η
− v

∂m

∂ξ
(2.139)

∂u∗

∂t
= −

(
mu∗ ∂u

∂ξ
+ mv∗ ∂u

∂η
+ W ∗ ∂u

∂ζ

)
− m

[
∂

∂ξ
(Jdp

′) +
∂

∂ζ
(J31p

′)
]

+(fηw∗ − fzv
∗) + v∗

[
u

∂m

∂η
− v

∂m

∂ξ

]
− u∗ w

a
+ G

1
2 Turb.u (2.140)

∂v∗

∂t
= −

(
mu∗ ∂v

∂ξ
+ mv∗ ∂v

∂η
+ W ∗ ∂v

∂ζ

)
− m

[
∂

∂η
(Jdp

′) +
∂

∂ζ
(J32p

′)
]

+(fzu
∗ − fξw

∗) − u∗
[
u

∂m

∂η
− v

∂m

∂ξ

]
− v∗ w

a
+ G

1
2 Turb.v (2.141)

∂w∗

∂t
= −

(
mu∗ ∂w

∂ξ
+ mv∗ ∂w

∂η
+ W ∗ ∂w

∂ζ

)

−∂p′

∂ζ
− ρ∗Buoy.w + (fξv

∗ − fηu∗) +
u∗u + v∗v

a
+ G

1
2 Turb.w (2.142)

∂G
1
2 p′

∂t
= −G

1
2

(
mu

∂p′

∂ξ
+ mv

∂p′

∂η
+ W

∂p′

∂ζ

)
+ gw∗

−ρ̄c2
s

[
m2

(
∂

∂ξ

G
1
2 u

m
+

∂

∂η

G
1
2 v

m

)
+

∂G
1
2 w

∂ζ

]
+ G

1
2 ρ̄c2

s

(
1
θ

dθ

dt
− 1

Q

dQ

dt

)
(2.143)

∂θ∗

∂t
= −

(
mu∗ ∂θ′

∂ξ
+ mv∗ ∂θ′

∂η
+ W ∗ ∂θ′

∂ζ

)
− ρ̄w

∂θ̄

∂ζ
+ ρ∗Src.θ + G

1
2 Turb.θ (2.144)
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∂q∗v
∂t

= −
(

mu∗ ∂qv

∂ξ
+ mv∗ ∂qv

∂η
+ W ∗ ∂qv

∂ζ

)
+ ρ∗Src.qv + G

1
2 Turb.qv (2.145)

∂q∗x
∂t

= −
(

mu∗ ∂qx

∂ξ
+ mv∗ ∂qx

∂η
+ W ∗ ∂qx

∂ζ

)
+ ρ∗Fall.qx + ρ∗Src.qx + G

1
2 Turb.qx (2.146)

∂G
1
2 Nx

∂t
= −

[
mu∗ ∂

∂ξ

(
Nx

ρ̄

)
+ mv∗ ∂

∂η

(
Nx

ρ̄

)
+ W ∗ ∂

∂ζ

(
Nx

ρ̄

)]

+ρ∗Src.
Nx

ρ̄
+ ρ∗Fall.

Nx

ρ̄
+ G

1
2 Turb.

Nx

ρ̄
(2.147)

p′

αDiv∗ p′ −αDiv∗

Div∗ =
1

G
1
2

[
m2

(
∂

∂ξ

u∗

m
+

∂

∂η

v∗

m

)
+

∂W ∗

∂ζ

]
(2.148)

Turb.φ
??

2.3.4

m, n

CReSS
3

•
•
•

p =
π

2
− φ

mλ =
1
a

δr

δp
(2.149)

nφ =
rλ

aλ sin p
=

r

a sin p
(2.150)

mλ = nφ
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1
a

δr

δp
=

r

a sin p
(2.151)

δr

r
=

δp

sin p
(2.152)

c

r = c
(
tan

p

2

)
(2.153)

p (2.150)

nφ =
c tan

p

2
2a sin

p

2
cos

p

2

=
c

2a cos2
p

2

= 1 (2.154)

φ

nφ =
2πa

2πa cosφ
= secφ (2.155)

mλ = sec φ (2.156)

x y
λ x φ y

x = aλ (2.157)
δy = a secφ δφ (2.158)

y

y = a ln
[
tan

(
π

4
+

φ

2

)]
(2.159)


