第4章

雲・降水の物理過程

雲物理学(cloud physics)は大きく分けて、雲微物理学(cloud microphysics)と雲 力学(cloud dynamics)に分けられる。これらは密接に関係しており、雲力学の理解の ためには雲物理学の知識は不可欠である。

水蒸気を含む空気塊が大気中を上昇するとき、水蒸気から雲・降水粒子への変換が 起こり、雲が生成され降水が起こる。降水の形成過程は大きく「暖かい雨」と「冷たい 雨(氷相雨)」に分けられる。暖かい雨とは氷相過程を全く経ずに雲から降る雨をいい、 雲のすべての領域が0°C以上にある。そのような雲を「暖かい雲(warm clouds)」と いう。一方、氷相雨というのは、降水粒子の成長過程の主要な部分に氷相過程が関与す るような雨で、そのような雨をもたらす雲を「冷たい雲(cold clouds)」という。この 場合、雲の一部または全部は0°C以下にあり、通常は液相と固相の水が両方存在する。 これらの雲のモデル化には、以下のカテゴリーがある。

- 暖かい雨のバルク法のパラメタリゼーション
- 氷相を含むバルク法のパラメタリゼーション
- 液相の粒子の粒径をいくつものビンに分け、粒径分布の時間発展を予報する方法
- 上記のビン法を氷相まで含める方法
- さらに、ビン法において元になるエアロゾルについても分類する方法
- 液相についてはビン法、氷相についてはバルク法を用いる方法(ハイブリッド型)

*CReSS*には、「暖かい雨のバルク法」と「氷相を含むバルク法」が実装されているので、これら2つのモデル化について詳述する。

4.1 暖かい雨のバルク法のパラメタリゼーション

4.1.1 暖かい雨における雲・降水過程の方程式系

暖かい雨のバルク法のパラメタリゼーションでは、水物質を次のような3つのカテゴリーに分ける¹。

記号	意味	内容
q_v	水蒸気混合比	気体の状態で大気中に存在する水。
q_c	雲水混合比	落下速度を零として扱う。実際の大気中の雲粒に対応し、これは通常 100 μm 以下
		の微小な液体粒子(微水滴)である。
q_r	雨水混合比	有意な落下速度を持つ液体の粒子で、実際の大気中の雨粒に対応する。

この過程に関係するモデル変数は水物質に関する3つの変数 [kg kg⁻¹] と温位(温度) [K] で、その時間発展の方程式系は、節2.1 で示した方程式系を簡便に記述して(ここでは地形を含まない方程式系を示しているが、今後の説明には何らの支障もない)、

$$\frac{\partial \bar{\rho}\theta}{\partial t} = \text{Adv.}\theta + \text{Turb.}\theta - \bar{\rho}w\frac{\partial \bar{\theta}}{\partial z} + \frac{\bar{\rho}\mathcal{L}_v}{C_p\Pi}\left(CN_{vc} - EV_{cv} - EV_{rv}\right)$$
(4.1)

$$\frac{\partial \bar{\rho} q_v}{\partial t} = \text{Adv.} q_v + \text{Turb.} q_v - \bar{\rho} \left(C N_{vc} - E V_{cv} - E V_{rv} \right)$$
(4.2)

$$\frac{\partial \bar{\rho} q_c}{\partial t} = \text{Adv.} q_c + \text{Turb.} q_c + \bar{\rho} \left(C N_{vc} - E V_{cv} - C N_{cr} - C L_{cr} \right)$$
(4.3)

$$\frac{\partial \bar{\rho} q_r}{\partial t} = \text{Adv.} q_r + \text{Turb.} q_r + \bar{\rho} \left(C N_{cr} + C L_{cr} - E V_{rv} \right) + \frac{\partial}{\partial z} \left(\bar{\rho} U_r q_r \right)$$
(4.4)

となる。ここで、Adv. ϕ は移流項、Turb. ϕ はサブグリッドスケールの乱流項を表し、 \mathcal{L}_v は水の蒸発の潜熱 [J kg⁻¹]、 C_p は乾燥空気の定圧比熱 [J K kg⁻¹]、II はエクスナー関数である。また、式 (4.4) の右辺の最 後の項は雨水の落下による q_r のフラックス発散を示している。また、考慮する微物理過程は以下のとおりで ある。

記号	内容
CN_{vc}	凝結による水蒸気から雲水への変換(condensation)。
EV_{cv}	蒸発による雲水から水蒸気への変換(evaporation)。
EV_{rv}	蒸発による雨水から水蒸気への変換(evaporation)。
CN_{cr}	併合成長による雲水から雨水への変換。併合や水蒸気拡散により、雲粒子が雨粒の大きさに成
	長することに対応する(autoconversion)。
CL_{cr}	衝突併合による雲水から雨水への変換。大水滴が小水滴を衝突併合する過程を表す(collection)。

これらの量はすべて正の値として定義される。また、水蒸気が直接雨水に凝結する過程は無視される。これらの各プロセスは次節に示すように計算される。

¹雨水のうち直径 0.1~0.5mm の水滴を霧雨(drizzle)と呼んで区別することがあるが、ここでは雨水に含める。

4.1.2 微物理過程

水蒸気と雲水の間の変換: $-CN_{vc} + EV_{cv}$

Klemp and Wilhelmson (1978) と同様に Soong and Ogura (1973)の湿潤飽和調節法をもちいる。これは、節 4.2.5 で説明する。

飽和混合比(Tetens の式): q_{vsw}

飽和混合比 q_{vsw} は Tetens の式を用いて、次のように表す。

$$q_{vsw} = \epsilon \frac{610.78}{p} \exp\left(17.269 \frac{\Pi \theta - 273.16}{\Pi \theta - 35.86}\right)$$
(4.5)

雲水から雨水への変換: CN_{cr}, CL_{cr}

併合成長 (CN_{cr}) と衝突併合による雲水から雨水への変換 (CL_{cr}) は Kessler (1969) のパラメタリゼー ションを用いて、

$$CN_{cr} = k_1 \left(q_c - a \right) \tag{4.6}$$

$$CL_{cr} = k_2 q_c q_r^{0.875} (4.7)$$

と計算される。ここで、

$$k_1 = 0.001 \ [s^{-1}]$$
 (4.8)

$$a = 0.001 \ [\text{kg kg}^{-1}]$$
 (4.9)

$$k_2 = 2.2 \quad [s^{-1}]$$
 (4.10)

である。

雨水の蒸発: EV_{rv}

Ogura and Takahashi (1971), Klemp and Wilhelmson (1978) と同様に、

$$EV_{rv} = \frac{1}{\bar{\rho}} \frac{(1 - q_v / q_{vsw}) C (\bar{\rho}q_r)^{0.525}}{5.4 \times 10^5 + 2.55 \times 10^6 / (pq_{vsw})}$$
(4.11)

と表される。ここでCは ventilation factor で、次のように与えられる。

$$C = 1.6 + 124.9 \left(\bar{\rho}q_r\right)^{0.2046} \tag{4.12}$$

雨水の落下速度: U_r

式 (4.4) 右辺の最後の項の雨水の終端落下速度 U_r は、Soong and Ogura (1973) に密度の変化を加えて、

$$U_r = 36.34 \left(\bar{\rho}q_r\right)^{0.1346} \left(\frac{\rho_0}{\bar{\rho}}\right)$$
(4.13)

と与えられる。ここで、 ρ_0 は基本場の地上面での密度 [kg m⁻³] で、 U_r の単位は [m s⁻¹] である。この 落下速度を用いて地上での降水が計算される。また、 z^* 系(ζ 系)での微分では、式 (2.59) で見られるよう に、メトリックがかかることに注意しなければならない。

4.2 氷相を含む雲・降水過程のパラメタリゼーション

4.2.1 氷相を含むバルク法のパラメタリゼーション

氷相を含む雲・降水過程のバルク法によるパラメタリゼーションについて、雲のモデルで用いられるもの を定式化する。ここで考えるものは、水物質の変換とそれによる温度と水蒸気混合比の変化である。バルク 法では大気中の水物質を雨や雪、霰といったいくつかのカテゴリーに分けて、それらを代表的変数(通常は 混合比、または、混合比と数濃度)で定式化し、その時間発展を解くものである。それゆえにバルク法を用 いる場合、各変数の定義、あるいは、その意味するところが明確でなければならない。モデルによってカテ ゴリー分けや変数をどのようにとるのかが異なる。

氷相を含むパラメタリゼーションの定式化では、以下の物理過程が考慮され、粒子のタイプによってそれ ぞれ定式化されなければならない。

- •1次的、および2次的な氷晶の核形成
- 水蒸気拡散による粒子の成長と消耗
- 粒子間の衝突成長
- 粒子の分裂(雨粒子の分裂)
- 別のカテゴリーへの変換(雲水 雨水、雲氷 雪、雪 霰など)
- 凍結と融解
- 未凍結水の剥離
- 重力落下

さて、モデルによって雲物理の変数の定義やその扱いは異なるが、ここでは次の2つのタイプの氷相のモ デルを考える。

- 各カテゴリーの混合比の時間発展方程式のみを解くもの
- 上記のほかに雲氷、雪、霰について、その数濃度についても時間発展方程式を解くもの

以下ではこれらについて、村上 (1999), Murakami et al. (1994), Murakami (1990) を中心に定式化をまと める。 さて、次のように、ここで考える「氷晶を含むバルク法」の雲・降水の物理過程のカテゴリーは、水蒸気のほかに、雲・降水粒子として、雲水、雨水、雲氷、雪、霰の5つである。これ以外に、霧水と雹を別のカ テゴリーとするモデルもある。

記号	意味	内容
θ	温位	ここでは $\theta = \overline{\theta} + \theta'$ である。
q_v	水蒸気混合比	気体の状態で大気中に存在する水。
q_c	雲水の混合比	液体の水で粒径が小さく落下速度が無視できるほどで、大気の運動とともに移動す る。
q_r	雨水の混合比	通常は直径 100 μm 以上の液体の粒子を雨と呼び、モデルでは「雨水」として表現 する。粒子の大きさによって決まる落下速度が有意であり、水平には大気とともに 動くが、鉛直に落下し空気塊から脱落する。
q_i	雲氷の混合比	雲物理では「氷晶」と呼ばれ、通常は 100 μm 以下の氷の微小な結晶のこと。落下 速度は無視できるほど小さい。
q_s	雪の混合比	モデルでは密度が 0.1 g cm ⁻³ 程度で、落下速度が 1 m s ⁻¹ 程度の固体降水粒子を 意味し、実際の雲粒子では雪結晶、雪片などが対応する。
q_g	霰の混合比	モデルでは密度が 0.4 g cm ⁻³ 程度で、落下速度が 1~4 m s ⁻¹ 程度の固体降水粒 子を意味し、実際の雲粒子では、雲粒つき雪結晶、雲粒つき雪片、霰などが対応す る。
q_h	雹の混合比	モデルでは密度が 0.9 g cm ⁻³ 程度で、落下速度が 10 m s ⁻¹ にも達する固体降水 粒子を意味し、実際の雲粒子では、凍雨、雹などが対応する。 <i>CReSS</i> では雹は霰 に含まれている。
N_i	雲氷の数濃度	雲氷を表現する場合、数濃度をもう一つの変数とすることがある。
N_s	雪の数濃度	雪の場合も同様である。
N_g	霰の数濃度	霰の場合も同様である。

ここで、温位の単位は [K]、混合比は [kg kg⁻¹]、数濃度は [m⁻³] である。ただし計算では混合比の 単位は [g kg⁻¹] にして計算することがある。これに伴って係数が変わる。

4.2.2 雲・降水過程の方程式系

ここで用いる方程式系は、温位と水蒸気、それにそれぞれの雲・降水粒子の時間発展方程式である。さら に数濃度を考慮する場合は、雲氷、雪、霰の数濃度の時間発展方程式が加わる。これらは、節 2.1 で示した 方程式系を簡便に記述したものである(地形を含まない方程式系を示す理由は節 4.1.1 と同様)。 まず、温位と水物質の混合比の時間発展方程式は、

$$\frac{\partial \bar{\rho}\theta}{\partial t} = \text{Adv.}\theta + \text{Turb.}\theta - \bar{\rho}w\frac{\partial \bar{\theta}}{\partial z} + \bar{\rho}\left(\text{Src.}\theta_V + \text{Src.}\theta_S + \text{Src.}\theta_F\right)$$
(4.14)

$$\frac{\partial \rho q_v}{\partial t} = \text{Adv.} q_v + \text{Turb.} q_v + \bar{\rho} \text{Src.} q_v \tag{4.15}$$

$$\frac{\partial \bar{\rho} q_c}{\partial t} = \text{Adv.} q_c + \text{Turb.} q_c + \bar{\rho} \text{Src.} q_c + \bar{\rho} \text{Fall.} q_c \tag{4.16}$$

$$\frac{\partial \bar{\rho} q_r}{\partial t} = \text{Adv.} q_r + \text{Turb.} q_r + \bar{\rho} \text{Src.} q_r + \bar{\rho} \text{Fall.} q_r$$
(4.17)

$$\frac{\partial \bar{\rho} q_i}{\partial t} = \text{Adv.} q_i + \text{Turb.} q_i + \bar{\rho} \text{Src.} q_i + \bar{\rho} \text{Fall.} q_i$$
(4.18)

$$\frac{\partial \bar{\rho} q_s}{\partial t} = \text{Adv.} q_s + \text{Turb.} q_s + \bar{\rho} \text{Src.} q_s + \bar{\rho} \text{Fall.} q_s \tag{4.19}$$

$$\frac{\partial \bar{\rho} q_g}{\partial t} = \text{Adv.} q_g + \text{Turb.} q_g + \bar{\rho} \text{Src.} q_g + \bar{\rho} \text{Fall.} q_g \tag{4.20}$$

と表される。ここで、下つき添え字v, c, r, i, s, gはそれぞれ水蒸気、雲水、雨水、雲氷、雪、霰を表し、以後 $x \Leftrightarrow y$ で代表することがある。

各項の意味は、以下のとおりである。

$\mathrm{Adv.}\phi$	温位または水物質の混合比の移流項
$\mathrm{Turb.}\phi$	サブグリッドスケールの乱流による温位または水物質の混合比の拡散項
$\mathrm{Src.} heta_V$	温位の生成・消滅項で凝結・蒸発に関するもの
$\mathrm{Src.} heta_S$	温位の生成・消滅項で昇華に関するもの
$\mathrm{Src.} heta_F$	温位の生成・消滅項で凍結・融解に関するもの
$\mathrm{Src.}q_x$	水物質の混合比の生成・消滅項
Fall. q_x	水物質の沈降(降水)の項

次に、雲氷、雪、霰の数濃度の時間発展方程式は、

$$\frac{\partial N_i}{\partial t} = \text{Adv.} \frac{N_i}{\bar{\rho}} + \text{Turb.} \frac{N_i}{\bar{\rho}} + \bar{\rho} \text{Src.} \frac{N_i}{\bar{\rho}} + \bar{\rho} \text{Fall.} \frac{N_i}{\bar{\rho}}$$
(4.21)

$$\frac{\partial N_s}{\partial t} = \text{Adv.} \frac{N_s}{\bar{\rho}} + \text{Turb.} \frac{N_s}{\bar{\rho}} + \bar{\rho} \text{Src.} \frac{N_s}{\bar{\rho}} + \bar{\rho} \text{Fall.} \frac{N_s}{\bar{\rho}}$$
(4.22)

$$\frac{\partial N_g}{\partial t} = \text{Adv.} \frac{N_g}{\bar{\rho}} + \text{Turb.} \frac{N_g}{\bar{\rho}} + \bar{\rho} \text{Src.} \frac{N_g}{\bar{\rho}} + \bar{\rho} \text{Fall.} \frac{N_g}{\bar{\rho}}$$
(4.23)

である。ここで、下つき添え字i, s, gは混合比の場合と同様にそれぞれ雲氷、雪、霰を表し、以後x や yで代表することがある。

Adv. $N_x/\bar{ ho}$	固体の水物質の数濃度移流項
Turb. $N_x/\bar{\rho}$	サブグリッドスケールの乱流による固体の水物質の数濃度の拡散項
Src. $N_x/\bar{\rho}$	固体の数濃度の生成・消滅項
Fall. $N_x/\bar{\rho}$	沈降(降水)による固体の数濃度の変化の項

各項の意味は以下の通りである。

これらの式の生成・消滅項は以下のようになる。

温位 θ の式(4.14)の生成・消滅項: $Src.\theta_V + Src.\theta_S + Src.\theta_F$

$$\operatorname{Src.}\theta_V = \frac{\mathcal{L}_v}{C_p \Pi} V D_{vr}$$
(4.24)

$$\operatorname{Src.}\theta_{S} = \frac{\mathcal{L}_{s}}{C_{p}\Pi} \left(NUA_{vi} + VD_{vi} + VD_{vs} + VD_{vg} \right)$$

$$(4.25)$$

$$\operatorname{Src}\theta_{F} = \frac{\mathcal{L}_{f}}{C_{p}\Pi} \left(NUF_{ci} + NUC_{ci} + NUH_{ci} + CL_{cs} + CL_{cg} + CL_{ri} + CL_{rs} + CL_{rg} - ML_{ic} - ML_{sr} - ML_{gr} + FR_{rg} - SH_{sr} - SH_{gr} \right)$$

$$(4.26)$$

水蒸気混合比 q_v の式 (4.15)の生成・消滅項 : $Src.q_v$

$$\operatorname{Src.} q_v = -NUA_{vi} - VD_{vr} - VD_{vi} - VD_{vs} - VD_{vg}$$

$$(4.27)$$

雲水の混合比 q_c の式(4.16)の生成・消滅項: $Src.q_c$

$$\operatorname{Src.} q_c = -NUF_{ci} - NUC_{ci} - NUH_{ci} - CL_{cr} - CL_{cs} - CL_{cg} - CN_{cr} + ML_{ic}$$
(4.28)

雨水の混合比 q_rの式(4.17)の生成・消滅項: Src.q_r

$$Src.q_{r} = VD_{vr} + CL_{cr} - CL_{ri} - CL_{rs} - CL_{rg} + CN_{cr} + ML_{sr} + ML_{gr} - FR_{rg} + SH_{sr} + SH_{gr}$$
(4.29)

雲氷の混合比 q_iの式(4.18)の生成・消滅項: Src.q_i

$$Src.q_i = NUA_{vi} + NUF_{ci} + NUC_{ci} + NUH_{ci}$$
$$+ VD_{vi} - CL_{ir} - CL_{is} - CL_{ig} - CN_{is} - ML_{ic} + SP_{si} + SP_{qi}$$
(4.30)

雪の混合比 q_sの式(4.19)の生成・消滅項: Src.q_s

$$Src.q_s = -SP_{si} + VD_{vs} + CL_{cs} + CL_{rs}\alpha_{rs} + CL_{is} - CL_{sr}(1 - \alpha_{rs}) - CL_{sg}$$
$$+ CN_{is} - CN_{sg} - ML_{sr} - SH_{sr}$$
(4.31)

霰の混合比 q_g の式(4.20)の生成・消滅項: $Src.q_g$

$$Src.q_{g} = -SP_{gi} + VD_{vg} + PG_{g} + CL_{ri} + CL_{ir} + (CL_{rs} + CL_{sr}) (1 - \alpha_{rs}) + CN_{sg} - ML_{gr} + FR_{rg} - SH_{gr}$$
(4.32)

雲氷の数濃度
$$\frac{N_i}{\bar{\rho}}$$
 の式 (4.21) の生成・消滅項 : Src. $\frac{N_i}{\bar{\rho}}$
Src. $\frac{N_i}{\bar{\rho}} = \frac{1}{m_{i0}} NUA_{vi} + \frac{N_c}{\bar{\rho}q_c} (NUF_{ci} + NUC_{ci} + NUH_{ci}) + SP_{si}^N + SP_{gi}^N$
 $+ \frac{N_i}{\bar{\rho}q_i} (VD_{vi} - CL_{ir} - CL_{is} - CL_{ig} - ML_{ic}) - AG_i^N - \frac{1}{m_{s0}} CN_{is}$ (4.33)

雪の数濃度
$$\frac{N_s}{\bar{\rho}}$$
 の式 (4.22) の生成・消滅項: Src. $\frac{N_s}{\bar{\rho}}$
Src. $\frac{N_s}{\bar{\rho}} = \frac{N_s}{\bar{\rho}q_s} (VD_{vs} - ML_{sr}) - CL_{sr}^N (1 - \alpha_{rs}) - CL_{sg}^N - AG_s^N + \frac{1}{m_{s0}}CN_{is} - CN_{sg}^N$ (4.34)
霰の数濃度 $\frac{N_g}{\bar{\rho}}$ の式 (4.23) の生成・消滅項: Src. $\frac{N_g}{\bar{\rho}}$

$$\operatorname{Src.} \frac{N_g}{\bar{\rho}} = \frac{N_g}{\bar{\rho}q_g} \left(VD_{vg} - ML_{gr} \right) + CL_{ri}^N + CL_{rs}^N \left(1 - \alpha_{rs} \right) + CN_{sg}^N + FR_{rg}^N$$
(4.35)

ここで、 $\mathcal{L}_v, \mathcal{L}_s, \mathcal{L}_f$ はそれぞれ水の蒸発・昇華・融解の潜熱 [J kg⁻¹]、 C_p は乾燥空気の定圧比熱 [J K kg⁻¹]、 П はエクスナー関数、 m_{i0}, m_{s0} はそれぞれ最小の雲氷・雪の質量 [kg] である。また、これらの式に出てくる 各項の意味(考慮する微物理過程)は次の表、各カテゴリー間の相互関係は次の図 4.1 のとおりで、節 4.2.4 においてこれらの生成・消滅項を構成する各変換項の定式化を行なう。

記号	内容
NUA_{vi}	昇華核形成(deposition or sorption nucleation)
NUF_{ci}	凍結核形成(condensation-freezing nucleation)
NUC_{ci}	接触凍結核形成(contact nucleation)
NUH_{ci}	均質凍結核形成(homogeneous nucleation)
SP	2 次氷晶生成 (secondary nucleation of ice crystals)
VD	水蒸気の昇華、凝結、蒸発(vapor deposition, evaporation and sublimation)
CL	衝突捕捉(collection)
PG	他の水物質との衝突付着による霰の成長(graupel produciton)
AG	凝集 (aggregation)
CN	あるカテゴリーから他のカテゴリーへの変換(conversion)
ML	融解 (melting)
FR	凍結 (freezing)
SH	水の剥離(shedding of liquid water)
SP^N	数密度に関する 2 次氷晶生成(secondary nucleation of ice crystals)
CL^N	数濃度に関する衝突捕捉(collection)
AG^N	数濃度に関する凝集(aggregation)
CN^N	数濃度に関するあるカテゴリーから他のカテゴリーへの変換(conversion)
FR^N	数濃度に関する凍結(freesing)
α_{rs}	$1 - \alpha_{rs}$ が雨滴と雪の衝突によって霰を生成する割合

図 4.1. バルク法の雲微物理過程の相互関係。

なお、(4.24),(4.27),(4.28) において水蒸気と雲水の間の交換の項*VD_{vc}* がないが、この項の計算には湿潤 飽和調節法を用いる。これについては、4.2.5 節で述べる。

4.2.3 雲・降水粒子の表現

粒径分布

ビン法(粒子スペクトル法)のように粒径分布の時間発展を計算するものと異なり、バルク法では混合比 のみあるいは混合比と数濃度だけを計算し、粒径分布はある適当な関数で与えなければならない。粒径分布 は平均質量や平均落下速度の計算で用いられる。

バルク法で用いられる粒径分布は、指数関数で与えられることが多い。これは Marshall and Palmer (1948) に基づくもので、指数関数粒径分布の傾きのパラメータ λ_x と y 切片濃度 n_{x0} を用いて、

$$\underbrace{n_x(D_x)}_{[m^{-4}]} = \underbrace{n_{x0}}_{[m^{-4}]} \exp(\underbrace{-\lambda_x}_{[m^{-1}]} D_x)$$
(4.36)

で与えられる。この分布を Marshall-Palmer 分布ということもある。あるいは、ガンマ関数2を用いて表され

$$\Gamma(x) = \int_{0}^{\infty} \exp(-t) t^{x-1} dt$$
(4.37)

²ガンマ関数とは階乗 n! を複素数にまで拡張したような特殊関数の一つで、これを用いるとある種の定積分が機械的に解くことがで きる。特に雲物理では指数関数分布 (4.36) を用いて積分することがあるが、このような場合、機械的に定積分ができてしまう。ガンマ 関数 Γ(x) の定義の仕方にはいくつかあるが、積分によって次のように定義される。

ることもある。あるカテゴリーxの粒径分布を表すガンマ関数分布³は、

$$\underbrace{f_x(D_x)}_{[m^{-1}]} = \frac{1}{\Gamma(\nu_x)} \left(\frac{D_x}{D_{nx}}\right)^{\nu_x - 1} \frac{1}{D_{nx}} \exp\left(-\frac{D_x}{D_{nx}}\right)$$
(4.43)

である。ここで、 D_x は粒子の直径 [m]、 $\Gamma(\nu_x)$ は規格化(0から∞まで積分して1になるようにする)定数、 ν_x はガンマ関数の形状パラメータ、 D_{nx} は特徴的直径である。これを用いて、雲・降水粒子の数濃度は、

$$\underbrace{n_x(D_x)}_{[m^{-4}]} = \underbrace{n_{xt}}_{[m^{-3}]} \underbrace{f_x(D_x)}_{[m^{-1}]}$$
(4.44)

のように表される。ここで、 n_{xt} はカテゴリーxの総粒子濃度である。この分布の場合の粒子の平均直径 \bar{D}_x は、

$$\bar{D}_x = \int_0^\infty D_x f_x(D_x) dD_x = \frac{\Gamma(\nu_x + 1)}{\Gamma(\nu_x)} D_{nx} = \nu_x D_{nx}$$
(4.45)

となる。ここで、最後の変換で (4.38) の関係を用いている。なお、一般にガンマ関数分布の P 次のモーメントは次のように表される。P は複素数でもよい。

$$\int_{0}^{\infty} D_x^P f_x(D_x) \ dD_x = \frac{\Gamma(\nu_x + P)}{\Gamma(\nu_x)} D_{nx}^P$$
(4.46)

ガンマ関数の性質として次のものがあり、

$$\Gamma\left(x+1\right) = x\Gamma\left(x\right) \tag{4.38}$$

$$\Gamma\left(1\right) = 1\tag{4.39}$$

特に x が正の整数 n のとき、

$$\Gamma(n+1) = n(n-1)(n-2)\cdots 2 \cdot 1 \cdot \Gamma(1) = n!$$
(4.40)

となり、また、

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{4.41}$$

である。これを用いると、たとえば雲物理の定積分に現れる次のようなものについて、部分積分を3回する代わりに、機械的に、

$$\int_0^\infty D_x^3 \exp\left(-\lambda_x D_x\right) \, dD_x = \frac{1}{\lambda_x^4} \Gamma\left(4\right) = \frac{6}{\lambda_x^4} \tag{4.42}$$

のように計算することができる。

³村上 (1999)

指数関数分布 (4.36) はガンマ関数分布 (4.43) の特別な場合で、(4.43) において、

$$\nu_x = 1 \tag{4.47}$$

$$D_{nx} = \frac{1}{\lambda_x} \tag{4.48}$$

とすると、指数関数分布 (4.36) になる。このとき、(4.46) は、

$$\int_{0}^{\infty} D_{x}^{P} \lambda_{x} \exp\left(-\lambda_{x} D_{x}\right) \, dD_{x} = \frac{1}{\lambda_{x}^{P}} \Gamma\left(P+1\right) \tag{4.49}$$

のように表せる。このように定積分が簡単に求められるのが、ガンマ関数の有効性である。また、このときの粒子の平均半径 \bar{D}_x は、

$$\bar{D}_x = \frac{1}{\lambda_x} \tag{4.50}$$

ように表わされる。

さて、ここでは、雲水、雲氷については単分散を、降水粒子の雨水、雪、霰については指数関数分布⁴を仮 定する。このとき、雲水と雲氷の平均直径は、

$$\bar{D}_c = \left(\frac{6\bar{\rho}q_c}{\pi\rho_w N_c}\right)^{\frac{1}{3}} \tag{4.51}$$

$$\bar{D}_i = \left(\frac{6\bar{\rho}q_i}{\pi\rho_i N_i}\right)^{\frac{1}{3}} \tag{4.52}$$

のように与えられる。ここで、 ρ_w は雲水の密度 [kg m⁻³]、 ρ_i は雲氷の密度 [kg m⁻³] である。ただし、 雲水の数密度 N_c については一定値、1 × 10⁸ m⁻³ を用いる。次に、雨水、雪、霰の粒径分布は、

$$n_r \left(D_r \right) = n_{r0} \exp\left(-\lambda_r D_r \right) \tag{4.53}$$

$$n_s \left(D_s \right) = n_{s0} \exp\left(-\lambda_s D_s \right) \tag{4.54}$$

$$n_g \left(D_g \right) = n_{g0} \exp\left(-\lambda_g D_g \right) \tag{4.55}$$

のように与えられる。ここで、 n_x はカテゴリーxのy切片濃度 $[m^{-4}]$ である。ただし、雨水については数 密度を計算しないので一定値、 $8 \times 10^6 m^{-4}$ を用いる。

⁴村上 (1999), Ikawa and Saito (1991), Murakami et al. (1994), Ikawa et al. (1991), Lin et al. (1983) で用いられている。 Ferrier (1994) は雲水について指数関数分布、その他の降水粒子についてはガンマ関数分布を用いている。

平均質量・落下速度

雲・降水粒子の質量は、その形状により粒径の冪乗の実験式で、

$$m_x \left(D_x \right) = \alpha_{ux} D_x^{\beta_{ux}} \tag{4.56}$$

のように与えられる。球形粒子の場合は β_{ux} = 3 である。ガンマ関数分布の場合、その平均質量は、

$$\bar{m}_x = \alpha_{ux} D_{nx}^{\beta_{ux}} \frac{\Gamma\left(\nu_x + \beta_{ux}\right)}{\Gamma(\nu_x)} \tag{4.57}$$

である。また、粒子の落下速度も同様に、直径の冪乗の実験式で与えられ、

$$U_x\left(D_x\right) = \alpha_{ux} D_x^{\beta_{ux}} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\gamma_{ux}}$$
(4.58)

同様に、ガンマ関数分布の場合、単位直径あたりの粒子数濃度 [m⁻⁴] と質量の重みをかけた平均の落下速度は、それぞれ、

$$\bar{U}_{xN} = \alpha_{ux} D_{nx}^{\beta_{ux}} \frac{\Gamma\left(\nu_x + \beta_{ux}\right)}{\Gamma(\nu_x)} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\gamma_{ux}}$$
(4.59)

$$\bar{U}_{xq} = \alpha_{ux} D_{nx}^{\beta_{ux}} \frac{\Gamma\left(\nu_x + 3 + \beta_{ux}\right)}{\Gamma\left(\nu_x + 3\right)} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\gamma_{ux}}$$
(4.60)

と与えられる。これらの関係は、指数関数分布を特別な場合として含み、(4.47) と (4.48) の場合、(4.59) と (4.60) は、ガンマ関数の関係式を用いると、

$$\bar{U}_{xN} = \alpha_{ux} \frac{\Gamma\left(1 + \beta_{ux}\right)}{\lambda_x^{\beta_{ux}}} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\gamma_{ux}}$$
(4.61)

$$\bar{U}_{xq} = \alpha_{ux} \frac{\Gamma\left(4 + \beta_{ux}\right)}{6\lambda_x^{\beta_{ux}}} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\gamma_{ux}}$$
(4.62)

となる。ここで、 ρ_0 は基本場の地表面の空気密度 [kg m⁻³] である。

指数関数分布 (4.53)~(4.55) の場合⁵、カテゴリーx = r, s, gの総粒子数 N_x は、

$$N_x = \int_0^\infty n_{x0} \exp\left(-\lambda_x D_x\right) \ dD_x = \frac{n_{x0}}{\lambda_x}$$
(4.63)

 $^{^{5}}$ Ikawa and Saito (1991)

であり、また単位体積あたりの水物質 x の全質量は、

$$\bar{\rho}q_x = \int_0^\infty \frac{\pi}{6} \rho_x D_x^3 n_{x0} \exp\left(-\lambda_x D_x\right) \ dD_x = \frac{\pi \rho_x n_{x0}}{\lambda_x^4} \tag{4.64}$$

となる。これらの2式より、指数関数粒径分布の傾きのパラメータ λ_x とそのy切片濃度 n_{x0} は、

$$\lambda_x = \left(\frac{\pi \rho_x N_x}{\bar{\rho} q_x}\right)^{\frac{1}{3}} \tag{4.65}$$

$$n_{x0} = N_x \left(\frac{\pi \rho_x N_x}{\bar{\rho} q_x}\right)^{\frac{1}{3}} \tag{4.66}$$

となる。よって、数濃度の重みをかけたカテゴリーxの終端落下速度は、

$$\bar{U}_{xN} = \frac{1}{N_x} \int_0^\infty U_x \left(D_x \right) n_{x0} \exp\left(-\lambda_x D_x \right) \, dD_x$$
$$= \alpha_{ux} \frac{\Gamma \left(1 + \beta_{ux} \right)}{\lambda_x^{\beta_{ux}}} \left(\frac{\rho_0}{\bar{\rho}} \right)^{\gamma_{ux}} \tag{4.67}$$

となり、当然これは (4.61) に一致する。同様に質量の重みをかけたカテゴリー xの終端落下速度は、

$$\bar{U}_{xq} = \frac{1}{\bar{\rho}q_x} \int_0^\infty \frac{\pi}{6} U_x \left(D_x \right) D_x^3 \rho_x n_{x0} \exp\left(-\lambda_x D_x \right) \, dD_x$$
$$= \alpha_{ux} \frac{\Gamma \left(4 + \beta_{ux} \right)}{6\lambda_x^{\beta_{ux}}} \left(\frac{\rho_0}{\bar{\rho}} \right)^{\gamma_{ux}} \tag{4.68}$$

となる。同様に、これは (4.62) に一致する。これらの平均の落下速度は、節 4.2.6 で述べる落下による混合 比と数濃度の変化の計算に用いられる。

最後に、各カテゴリーの形状パラメータをまとめておく。

変数	y 切片濃度 [m ^{−4}]	落下速度の形状パラメータ	密度 [kg m ⁻³]
			<u>^</u>
q_c		$(\alpha_{uc} = 2.98 \times 10^7, \ \beta_{uc} = 2.0, \ \gamma_{uc} = 1.0)$	$\rho_w = 1.0 \times 10^3$
q_r	$n_{r0} = 8.0 \times 10^6$	$\alpha_{ur} = 842, \ \beta_{ur} = 0.8, \ \gamma_{ur} = 0.5$	$\rho_w = 1.0 \times 10^3$
q_i		$(\alpha_{ui} = 700, \ \beta_{ui} = 1.0, \ \gamma_{ui} = 0.33)$	$\rho_i = 5.0 \times 10^2$
q_s	$(n_{s0} = 1.8 \times 10^6)$	$\alpha_{us} = 17, \ \beta_{us} = 0.5, \ \gamma_{us} = 0.5$	$\rho_s = 8.4 \times 10^1$
q_g	$(n_{g0} = 1.1 \times 10^6)$	$\alpha_{ug} = 124, \ \beta_{ug} = 0.64, \ \gamma_{ug} = 0.5$	$\rho_g = 3.0 \times 10^2$

4.2.4 生成・消滅項の各物理過程の定式化

ここからは生成・消滅項の各物理過程を説明するが、用いられている記号が非常に複雑なので、あきらか と思われるものも含めてほとんどすべて(除かれているものもある)を各節毎に表にまとめてある(節 4.2.5 と節 4.2.7 についても同様)。

1 次氷晶の核形成: NUA_{vi}, NUF_{ci}, NUC_{ci}, NUH_{ci}

1次氷晶核形成には、次のようなものがある。

均質核形成	昇華核形成		水蒸気 氷晶	×:起こらないから
	凍結核形成		過冷却水滴 氷晶	$\bigcirc: NUH_{ci}$
不均質核形成	昇華核形成	昇華核	水蒸気 氷晶	$\bigcirc: NUA_{vi}$
	凍結核形成	凝結凍結核		× : 分からないから
		接触凍結核	過冷却水滴 氷晶	$\bigcirc: NUC_{ci}$
		内部凍結核	過冷却水滴 氷晶	$\bigcirc: NUF_{ci}$

ここでは、そのうち上記の NUA_{vi}, NUF_{ci}, NUC_{ci}, NUH_{ci} についてモデルに取り入れる。

(1) 昇華核形成: NUAvi

(a) 昇華核数濃度を過冷却温度の関数としたもの⁶

昇華核数濃度を過冷却温度 T_s の関数とした場合は、 $w \leq 0$ [m s⁻¹] のときに、

$$NUA_{vi} = \frac{m_{i0}}{\bar{\rho}}\beta_2 N_{i0} \exp\left(\beta_2 T_s\right) \left(\frac{S_i - 1}{S_{wi} - 1}\right)^B \frac{\partial T_s}{\partial z} w \tag{4.69}$$

$$NUA_{vi}^{N} = \frac{NUA_{vi}}{m_{i0}} \tag{4.70}$$

となる。ただし、鉛直微分は実空間での微分であるので、式 (2.59) に見られるように、*z** 系(ζ 系)での微 分にはメトリックがかかる。

(b) 昇華核数濃度を過飽和度の関数としたもの⁷

昇華核数濃度を過飽和度 SS_i の関数とした場合は、 $w \leq 0$ [m s⁻¹]のときに、

$$NUA_{vi} = \frac{m_{i0}}{\bar{\rho}} 15.25 \exp(5.17 + 15.25SS_i) \frac{\partial SS_i}{\partial z} w$$
(4.71)

$$NUA_{vi}^N = \frac{NUA_{vi}}{m_{i0}} \tag{4.72}$$

となる。ただし、(a)の過冷却の場合と同様に、z*系((系)での微分にはメトリックがかかる。

⁶Ikawa and Saito (1991), Cotton et al. (1986), Murakami (1990), Ikawa et al. (1991), Murakami et al. (1994), 村上 (1999) ⁷Meyers et al. (1992), 村上 (1999)

(c) 上記の両方を考慮したもの⁸

Ferrier (1994) は氷晶の非均質昇華核形成を温度で分けて、-5°C 以上のときは Murakami (1990), Cotton et al. (1986) の昇華核形成の定式化を、それ以下のときは Meyers et al. (1992) のそれを用いる方法をとった。それは、 $w \leq 0$ [m s⁻¹] のときに、次のように与えられる。

$$NUA_{vi} = \frac{m_{i0}}{\bar{\rho}} w \frac{\partial N_i}{\partial z}$$
(4.73)

$$NUA_{vi}^N = \frac{NUA_{vi}}{m_{i0}} \tag{4.74}$$

ここでは、 $N_i \in -5$ °C で分けて、

$$N_{i} = \begin{cases} N_{i01} \exp(\beta_{2}T_{s}) \left(\frac{S_{i}-1}{S_{wi}-1}\right)^{B}, & T \ge -5 \ [^{\circ}C] \\ N_{i02} \exp(a_{1}SS_{i}-b_{1}), & T < -5 \ [^{\circ}C] \end{cases}$$
(4.75)

のように与える。ここでも、(a),(b)と同様に、鉛直微分は実空間での微分で、*z**系(ζ系)での微分にはメトリックがかかる。

(a)~(c) で用いられた記号の意味は、以下のとおりである。

a_1	−5 °C 以下のときの Ferrier の式の係数	12.96	
b_1	−5 °C 以下のときの Ferrier の式の係数	0.639	
B	Huffmann and Vail の式の係数	4.5	
m_{i0}	最小の雲氷の質量	10^{-12}	kg
N_{i0}	Fletcher の式の係数	10^{-2}	m^{-3}
N_{i01}	−5 °C 以上のときの Ferrier の式の粒子数	10^{3}	m^{-3}
N_{i02}	−5 °C 以下のときの Ferrier の式の粒子数	50	m^{-3}
q_{vsi}	氷に対する飽和混合比		$\rm kg \ kg^{-1}$
q_{vsw}	水に対する飽和混合比		$\rm kg \ kg^{-1}$
T	温度		Κ
T_0	氷の融点	273.16	Κ
T_s	過冷却温度 $(T_0 - T)$		Κ
S_i	空気塊の水蒸気混合比と氷飽和水蒸気混合比の比		
S_{wi}	水飽和水蒸気混合比と氷飽和水蒸気混合比の比		
SS_i	氷過飽和度 $(S_i - 1)$		
w	z 座標系における鉛直流		${\rm m~s^{-1}}$
β_2	Fletcher の式の係数	0.6	K^{-1}
$\bar{ ho}$	基本場の空気密度		$\rm kg~m^{-3}$

(2) 内部凍結核形成: NUF_{ci}

雲粒の不均質凍結は、凍結核の大きさや物理・化学的性質、雲粒の温度、大きさなどに依存する。ここでは Bigg (1953)の実験式を雲粒の大きさまで外挿したものを用いる⁹。

$$NUF_{ci} = B' \left[\exp\left(A'T_s\right) - 1 \right] \frac{\bar{\rho}q_c^2}{\rho_w N_c}$$
(4.76)

$$NUF_{ci}^{N} = B' \left[\exp\left(A'T_{s}\right) - 1 \right] \frac{q_{c}}{\rho_{w}}$$
(4.77)

ここで用いられた記号の意味は、以下のとおりである。

A'	Biggの実験式の係数	0.66	K^{-1}
B'	Biggの実験式の係数	100.0	${\rm m}^{-3}~{\rm s}^{-1}$
N_c	雲粒の数濃度	1×10^{8}	m^{-3}
T	温度		Κ
T_0	氷の融点	273.16	Κ
T_s	過冷却温度 $(T_0 - T)$		Κ
$ar{ ho}$	基本場の空気密度		$\rm kg~m^{-3}$
$ ho_w$	水の密度	1×10^{3}	${\rm kg}~{\rm m}^{-3}$

(3) 接触凍結核形成: NUC_{ci}

接触凍結核形成¹⁰は氷晶核(凍結核)が過冷却雲粒と衝突して起こるが、それには次の3つのプロセスを 考える。

- ブラウン運動(Brownian diffusion)
- 拡散泳動(diffusiophoresis)
- 熱泳動 (thermophoresis)

これらによる氷晶発生率は、次のように与えられる。

$$\left[\frac{dN_c}{dt}\right]_b = F_1 \mathcal{D}_{ar} \tag{4.78}$$

$$\left[\frac{dN_c}{dt}\right]_v = F_1 F_2 \frac{R_v T}{\mathcal{L}_v} \tag{4.79}$$

$$\left[\frac{dN_c}{dt}\right]_t = F_1 F_2 f_t \tag{4.80}$$

⁹村上 (1999), Ikawa and Saito (1991)

¹⁰村上 (1999), Cotton et al. (1986), Young (1974)

ここで、

$$F_1 = 2\pi D_c N_c N_{ar} \tag{4.81}$$

$$F_2 = \frac{\kappa_a}{p} \left(T - T_{cl} \right) \tag{4.82}$$

$$f_t = \frac{0.4 \left[1 + 1.45 K_n + 0.4 \exp\left(-1 / K_n\right)\right] (\kappa + 2.5 K_n \kappa_a)}{(1 + 3K_n) \left(2\kappa + 5\kappa_a K_n + \kappa_a\right)}$$
(4.83)

である。これらの式に現れる K_n は Knudsen 数で、

$$K_n = \lambda_{a0} \frac{p_{00}}{T_{00}R_a} \frac{T}{p} \tag{4.84}$$

のように定義される。また、エアロゾル粒子の拡散係数 Dar は、

$$\mathcal{D}_{ar} = \frac{kT_{cl}}{6\pi R_a \mu} \left(1 + K_n\right) \tag{4.85}$$

であり、温度 T_{cl} で活性化する接触凍結核の数濃度 N_{ar} は¹¹、

$$N_{ar} = N_{a0} \left(270.16 - T_{cl} \right)^{1.3} \tag{4.86}$$

となる。最終的に、接触凍結核による氷晶の形成は、

$$NUC_{ci}^{N} = \frac{1}{\bar{\rho}} \left(\left[\frac{dN_{c}}{dt} \right]_{b} + \left[\frac{dN_{c}}{dt} \right]_{v} + \left[\frac{dN_{c}}{dt} \right]_{t} \right)$$

$$(4.87)$$

$$NUC_{ci} = \frac{\bar{\rho}q_c}{N_c} NUC_{ci}^N \tag{4.88}$$

のように、これら3つのプロセスの和として表現する。

ここで用いられた記号の意味は、以下のとおりである。

D_c	雲粒の直径		m
k	ボルツマン定数	$1.380658{\times}10^{-23}$	$\rm J~K^{-1}$
\mathcal{L}_v	水の蒸発の潜熱		$\rm J~kg^{-1}$
N_{a0}	接触凍結核の数濃度の式の係数	2×10^5	m^{-3}
N_c	雲粒の数濃度	1×10^{8}	m^{-3}

 11 Cotton et al. (1986)

p	気圧		Pa
p_{00}	基準気圧	101325	Pa
R_a	エアロゾル粒子の半径	3×10^{-7}	m
R_v	水蒸気の気体定数	461.0	$\rm J~K^{-1}~kg^{-1}$
T	温度		Κ
T_{00}	基準温度	293.15	Κ
T_{cl}	雲粒の温度		Κ
κ	空気の熱伝導率	2.4×10^{-2}	${\rm J}~{\rm m}^{-1}~{\rm s}^{-1}~{\rm K}^{-1}$
κ_a	エアロゾルの熱伝導率		${\rm J}~{\rm m}^{-1}~{\rm s}^{-1}~{\rm K}^{-1}$
λ_{a0}	p_{00}, T_{00} での平均自由行程	6.6×10^{-8}	m
μ	空気の粘性係数		$\rm kg \ m^{-1} \ s^{-1}$
$\bar{ ho}$	基本場の空気密度		$\rm kg~m^{-3}$

(4) 均質凍結核形成: NUH_{ci}

気温が-40°C以下になると、雲水は瞬間的に凍ると仮定する¹²。これより、均質凍結核形成の割合は、

$$NUH_{ci}^{N} = \frac{1}{\bar{\rho}} \frac{N_c}{2\Delta t} \tag{4.89}$$

$$NUH_{ci} = \frac{q_c}{2\Delta t} \tag{4.90}$$

のように、中点蛙飛び法の時間間隔 2Δt の間のすべての雲水が雲氷に変換される。なお、この計算の前に湿 潤飽和調節により雲水の生成の計算がなされていなければならない(Ferrier,1994)。

2次氷晶の核形成: SP

2次氷晶生成についてはわからない点が多いが、現状で知られている主要なものに以下の過程がある。

- 雪・霰が過冷却雲粒を捕捉しながら成長するとき氷の微粒子を生成する(Hallett and Mossop, 1974)。
- 雪と霰同士が落下中に衝突して小さな氷の破片を生成する(Vardiman, 1978)。
- 大粒の過冷却水滴が凍結するとき高濃度の氷晶を発生する(Hobbs and Rangno, 1985)。

ここではこれらのうち、1 つ目の Hallett-Mossop rime splintering mechanism のみを考えることにする と¹³、2 次氷晶の核形成割合は、

$$SP_{si}^{N} = \frac{1}{\bar{\rho}} \times 3.5 \times 10^{8} f(T_{s}) CL_{cs}$$
(4.91)

$$SP_{si} = m_{i0}SP_{si}^N \tag{4.92}$$

 $^{^{12}}$ Ikawa and Saito (1991), Ferrier (1994)

¹³村上 (1999), Ikawa and Saito (1991), Cotton et al. (1986)

$$SP_{gi}^{N} = \frac{1}{\bar{\rho}} \times 3.5 \times 10^{8} f\left(T_{g}\right) CL_{cg}$$

$$\tag{4.93}$$

$$SP_{gi} = m_{i0}SP_{gi}^N \tag{4.94}$$

のように与えられる。ただし、霰については、湿潤成長するときには 2 次氷晶生成は起こらない。ここで、 粒子の温度の関数 $f(T_x)$ (ただし T_x は T_s または T_g である) は、次のように定義される。

$$f(T_x) = \begin{cases} 0, & T_x > 270.16 \ [\text{K}] \\ \frac{T_x - 268.16}{2}, & 268.16 \le T_x \le 270.16 \ [\text{K}] \\ \frac{268.16 - T_x}{3}, & 265.16 \le T_x \le 268.16 \ [\text{K}] \\ 0, & T_x < 265.16 \ [\text{K}] \end{cases}$$
(4.95)

Cotton et al. (1986) の (72) では $f(T_x)$ が負の値になってしまうが、絶対値を取ると考えると上式 (4.95) と同じになる。(4.95) では $T_x = 268.16$ [K] で $f(T_x) = 0$ となる関数であるが、Ikawa et al. (1991), Ikawa and Saito (1991) では、

$$f(T_x) = \begin{cases} 0, & T_x \ge 270.16 \ [\text{K}] \\ \frac{270.16 - T_x}{2}, & 268.16 < T_x < 270.16 \ [\text{K}] \\ 1, & T_x = 268.16 \ [\text{K}] \\ \frac{T_x - 265.16}{3}, & 265.16 \le T_x < 268.16 \ [\text{K}] \\ 0, & T_x < 265.16 \ [\text{K}] \end{cases}$$
(4.96)

のような、 $T_x = 268.16$ [K] で $f(T_x) = 1$ となる関数を用いており、この場合 -5 °C で最大値をとる。この方がもっともらしい。

なお、ここで用いられた記号の意味は、以下のとおりである。

CL_{cg}	霰が雲水を衝突併合する成長速度		s^{-1}
CL_{cs}	雪が雲水を衝突併合する成長速度		s^{-1}
m_{i0}	最小の雲氷の質量	10^{-12}	kg
T_s	雪の温度		Κ
T_{q}	霰の温度		Κ
T_x	雪または霰の温度		Κ
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$

水蒸気拡散成長: VD

拡散成長とは水蒸気と粒子間の調節の水分子の交換による生成・成長・消滅・消耗を指す。次のような過 程があり、ここではそのうちいくつかを考慮する。

気相-液相	凝結	水蒸気 雲水	湿潤飽和調節で計算する
		水蒸気 雨水	小さいので無視する
	蒸発	雲水 水蒸気	湿潤飽和調節で計算する
		雨水 水蒸気	$VD_{vr} < 0$
気相一固相	昇華凝結	水蒸気 雲氷	$VD_{vi} > 0$
		水蒸気 雪	$VD_{vs} > 0$
		水蒸気 霰	$VD_{vg} > 0$
		水蒸気 雹	$VD_{vh} > 0$
	昇華蒸発	雲氷 水蒸気	$VD_{vi} < 0$
		雪 水蒸気	$VD_{vs} < 0$
		霰 水蒸気	$VD_{vg} < 0$
		雹 水蒸気	$VD_{vh} < 0$

(1) 雨水の蒸発: VD_{rv}

雨水の蒸発による混合比と数濃度の変化は、

$$VD_{vr} = -VD_{rv} = \begin{cases} \frac{2\pi}{\bar{\rho}} \left(S_w - 1 \right) G_w \left(T, p \right) VENT_r, & S_w - 1 < 0 \\ 0, & S_w - 1 \ge 0 \end{cases}$$
(4.97)

のように表される¹⁴。水蒸気と雨水の拡散成長においては、凝結量は非常に小さいので未飽和の場合の蒸発 のみを考慮する。ここで、

$$G_w(T,p) = \left(\frac{\mathcal{L}_v^2}{\kappa R_v T^2} + \frac{1}{\bar{\rho}q_{vsw}\mathcal{D}_v}\right)^{-1}$$
(4.98)

である。また、雨水についての通風係数の項は、

$$VENT_{r} = n_{r0} \left[0.78\lambda_{r}^{-2} + 0.31S_{c}^{\frac{1}{3}}\nu^{-\frac{1}{2}}\alpha_{ur}^{\frac{1}{2}}\Gamma\left(\frac{5+\beta_{ur}}{2}\right)\lambda_{r}^{-\frac{(5+\beta_{ur})}{2}}\left(\frac{\rho_{0}}{\bar{\rho}}\right)^{\frac{1}{4}} \right]$$
(4.99)

のように表される。

¹⁴村上 (1999)

ここで用いられた記号の意味は、以下のとおりである。

\mathcal{D}_v	水蒸気の拡散係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
\mathcal{L}_v	水の蒸発の潜熱		$\rm J~kg^{-1}$
n_{r0}	雨水の y 切片濃度	$8.0 imes 10^6$	m^{-4}
q_{vsw}	水に対する飽和混合比		$\rm kg \ kg^{-1}$
R_v	水蒸気の気体定数	461.0	$\rm J~K^{-1}~kg^{-1}$
S_c	シュミット数	0.6	
$S_w - 1$	空気塊の水過飽和度		
T	温度		Κ
α_{ur}	雨水の落下速度と直径の関係式に現れる係数	842	$\mathbf{m}^{1-\beta_{ur}} \ \mathbf{s}^{-1}$
β_{ur}	雨水の落下速度と直径の関係式に現れる係数	0.8	
λ_r	雨水の粒径分布を表す逆指数関数の傾き		m^{-1}
κ	空気の熱伝導率	2.4×10^{-2}	${\rm J~m^{-1}~s^{-1}~K^{-1}}$
ν	空気の動粘性係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
$ar{ ho}$	基本場の空気密度		$\rm kg \ m^{-3}$
$ ho_0$	基本場の地表面における密度		${\rm kg}~{\rm m}^{-3}$

(2) 雪・霰の昇華凝結 (昇華蒸発): VD_{vs}, VD_{vg} ¹⁵

雪または霰の昇華凝結(昇華蒸発)速度は雨水と同様に定式化される。ただし、凝結も昇華も考慮され、 また、氷の融点以上の場合と以下の場合に分けて定式化される。ここでは、x = s, gとして、雪と霰を同時 に定式化する。それは、

T < T₀のとき、過冷却雲粒捕捉時の凍結による潜熱の加熱分を考慮して、

$$VD_{vx} = \frac{2\pi}{\bar{\rho}} \left(S_i - 1\right) G_i \left(T, p\right) VENT_x - \frac{\mathcal{L}_s \mathcal{L}_f}{\kappa R_v T^2} G_i \left(T, p\right) CL_{cx}$$
(4.100)

 $T > T_0$ のとき、融解がないとき ($ML_{xr} < 0$) と融解が起こるとき ($ML_{xr} \ge 0$) に分けて、

$$VD_{vx} = \begin{cases} \frac{2\pi}{\bar{\rho}} \left(S_w - 1 \right) G_w \left(T, p \right) VENT_x, & ML_{xr} \ge 0 \\ \\ 2\pi \mathcal{D}_v \left(q_v - q_{vs} \left(T_0 \right) \right) VENT_x, & ML_{xr} < 0 \end{cases}$$
(4.101)

である。ここで、

$$G_i(T,p) = \left(\frac{\mathcal{L}_s^2}{\kappa R_v T^2} + \frac{1}{\bar{\rho}q_{vsi}\mathcal{D}_v}\right)^{-1}$$
(4.102)

¹⁵村上 (1999), Ikawa and Saito (1991), Lin et al (1983)

であり、 $G_w(T,p)$ は(4.98)で与えられる。また、x = s, gについて通風係数は、次のように与えられる。

$$VENT_{x} = n_{x0} \left[0.78\lambda_{x}^{-2} + 0.31S_{c}^{\frac{1}{3}}\nu^{-\frac{1}{2}}\alpha_{ux}^{\frac{1}{2}}\Gamma\left(\frac{5+\beta_{ux}}{2}\right)\lambda_{x}^{-\frac{(5+\beta_{ux})}{2}}\left(\frac{\rho_{0}}{\bar{\rho}}\right)^{\frac{1}{4}} \right]$$
(4.103)

ここで用いられた記号の意味は、以下のとおりである。

CL_{cg} 軟が雪水を衝突併合する成長速度 s^{-1} CL_{cs} 雪が雪水を衝突併合する成長速度 s^{-1} D_{v} 水蒸気の拡散係数 $m^{2} s^{-1}$ L_{f} 水の融解の潜熱 J kg^{-1} C_{s} 水の見華の潜熱 J kg^{-1} n_{g0} 霰の見切片濃度 m^{-4} n_{s0} 雪の切切片濃度 m^{-4} ML_{gr} 歌から雨水への融解の変換速度 m^{-4} ML_{gr} 雪から雨水への融解の変換速度 s^{-1} q_{vsi} 水気気気水定数 s^{-1} q_{vsi} 水に対する飽和混合比 kg kg^{-1} q_{vsi} 水花気気気体定数 461.0 J K^{-1} kg^{-1} g_{vsi} メに対する飽和混合比 kg kg^{-1} kg kg^{-1} S_{c} シュミット数 0.6 s^{-1} $S_{w} - 1$ 空気塊の水過飽和度 J K^{-1} kg^{-1} s^{-1} $S_{w} - 1$ 空気塊の水通飽和度 J M - s^{-1} s^{-1} g_{wis} シュミット数 0.6 J M - s^{-1} g_{wis} 大の融点 273.16 K a_{ug} <				
CL_cs雪が雪水を衝突併合する成長速度s ⁻¹ Dv水蒸気の拡散係数m ² s ⁻¹ Dv水蒸気の拡散係数J kg ⁻¹ Lf水の融解の潜熱J kg ⁻¹ Ls水の昇準の潜熱m ⁻⁴ ng0霰の y 切片濃度m ⁻⁴ ns0雪の y 切片濃度m ⁻⁴ MLgr霰から雨木への融解の変換速度s ⁻¹ MLsr雪から雨木への融解の変換速度s ⁻¹ qvsi(70)水の融点に対する飽和混合比kg kg ⁻¹ Rv水蒸気の気体定数461.0J K ⁻¹ kg ⁻¹ Rv水蒸気の気体定数0.6s ⁻¹ Scシニミット数0.6s ⁻¹ Su空気塊の水過飽和度ssT温度KT温度KAug雪の落下速度と直径の関係式に現れる係数124m ^{1-βug} s ⁻¹ Aug雪の落下速度と直径の関係式に現れる係数0.5sAg霰の落下速度と直径の関係式に現れる係数0.5sAg電の粒径分布を表す逆指数関数の傾きm ⁻¹ Ag電の粒径分布を表す逆指数関数の傾きm ⁻¹ Ag電の粒径分布を表す逆指数関数の傾きm ² s ⁻¹ µ空気の動粘性係数24×10 ⁻² Jm ⁻¹ s ⁻¹ K ⁻¹ µ空気の動粘低系24×10 ⁻² Jm ⁻¹ s ⁻¹ K ⁻¹ µ三人三人SS1四S1S1三人S	CL_{cg}	霰が雲水を衝突併合する成長速度		s^{-1}
D_v 林蒸気の拡散係数 m ² s ⁻¹ L_f 林の融解の潜熱 J kg ⁻¹ L_s 林の昇華の潜熱 J kg ⁻¹ n_{g0} 観の y 切片濃度 m ⁻⁴ n_{s0} 雪の y 切片濃度 m ⁻⁴ ML_gr 霰から雨水への融解の変換速度 s ⁻¹ ML_sr 雪から雨水への融解の変換速度 s ⁻¹ q_{vsi} (70) 水の融点に対する飽和混合比 kg kg ⁻¹ q_{vsi} 水蒸気の気体定数 461.0 J K ⁻¹ kg ⁻¹ q_{vsi} 火流気の気体定数 0.6 - S_c シュミット数 0.6 - $S_w - 1$ 空気塊の水過飽和度 - - $S_w - 1$ 空気 - - G_w 報応 - - Q_w 戦の水高電 - - g_w 電の溶下速度と直径の関係式に現れる係数 0.5 - A_u 雪の粒径	CL_{cs}	雪が雲水を衝突併合する成長速度		s^{-1}
Lf水の融解の潜熱J kg ⁻¹ Lsベの昇華の潜熱J kg ⁻¹ ng0紙の y 切片濃度m ⁻⁴ ns0雪の y 切片濃度m ⁻⁴ MLg7紙から雨水への融解の変換速度s ⁻¹ MLsr雪から雨水への融解の変換速度s ⁻¹ qes(70)水の融点に対する飽和混合比kg kg ⁻¹ qesi水広対する飽和混合比kg kg ⁻¹ Re水蒸気の気体定数461.0Scシュミット数0.6Scシュミット数0.6Scシュミット数0.6Sc空気塊の水過飽和度エT温度KAug報の落下速度と直径の関係式に現れる係数124Aug電の幕下速度と直径の関係式に現れる係数0.64βug転の粘径分布を表す逆指数関数の傾きn ^{1-Aug} s ⁻¹ Aug雪の粒径分布を表す逆指数関数の傾き0.5人g転の粒径分布を表す逆指数関数の傾きm ⁻¹ 人空気の熱松導率2.4×10 ⁻² レ空気の熱松振数2.4×10 ⁻² 戶基本場の空気密度kg m ⁻³ 戶基本場の空気密度kg m ⁻³ 戶基本場の空気密度kg m ⁻³	\mathcal{D}_v	水蒸気の拡散係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
Ls水の昇華の潜熱J kg ⁻¹ ng0額の y切片濃度m ⁻⁴ ns0雪の y切片濃度m ⁻⁴ MLgr額から雨水への融解の変換速度s ⁻¹ MLsr雪から雨水への融解の変換速度s ⁻¹ qvs(7)水の融点に対する飽和混合比kg kg ⁻¹ qvsi氷に対する飽和混合比kg kg ⁻¹ Rv水蒸気の気体定数461.0J K ⁻¹ kg ⁻¹ Scシュミット数0.6Sr-1空気塊の氷過飽和度-Sv2気塊の水過飽和度-T温度KAug約8下速度と直径の関係式に現れる係数124Aug1 ^{-1 βug s⁻¹Aug50-Aug電の落下速度と直径の関係式に現れる係数0.64Jug1^{-1 βug s⁻¹Aug101^{-1 βug s⁻¹Aug電の落下速度と直径の関係式に現れる係数0.54Jug電の粒径分布を表す逆指数関数の傾きm⁻¹Aug空気の熱伝導率2.4×10⁻²Aug空気の動粘性係数2.4×10⁻²p基本場の空気密度kg m⁻³p基本場の空気密度kg m⁻³}}}	\mathcal{L}_{f}	水の融解の潜熱		$\rm J~kg^{-1}$
ng0報の y 切片濃度m ⁻⁴ ns0雪の y 切片濃度m ⁻⁴ NLgr報から雨木への融解の変換速度s ⁻¹ MLgr雪から雨木への融解の変換速度s ⁻¹ qws(7)木の融点に対する飽和混合比kg kg ⁻¹ qws(7)水に対する飽和混合比kg kg ⁻¹ Rw水蒸気の気体定数461.0J K ⁻¹ kg ⁻¹ Scシュミット数0.6Si-1空気塊の氷過飽和度Sw -1空気塊の氷過飽和度T温度KT温度KAug第の落下速度と直径の関係式に現れる係数124Aug雪の落下速度と直径の関係式に現れる係数0.64βug電の落下速度と直径の関係式に現れる係数0.64βug電の落下速度と直径の関係式に現れる係数0.54月ug電の整径分布を表す逆指数関数の傾きm ⁻¹ Ag雪の粒径分布を表す逆指数関数の傾きm ⁻¹ 水空気の熱恬係数2.4×10 ⁻² 戶基本場の空気密度×戶基本場の地表面における密度kg m ⁻³ 戶基本場の地表面における密度kg m ⁻³	\mathcal{L}_s	水の昇華の潜熱		$\rm J~kg^{-1}$
ns0雪の y 切片濃度m ⁻⁴ MLgr報から雨木への融解の変換速度s ⁻¹ MLsr雪から雨木への融解の変換速度s ⁻¹ qvs(7)然から雨木への融解の変換速度s ⁻¹ qvs(7)水の融点に対する飽和混合比kg kg ⁻¹ qvsi*Kに対する飽和混合比kg kg ⁻¹ Rv林煮気の気体定数461.0J K ⁻¹ kg ⁻¹ Scジェミット数0.6·Sa空気塊の氷過飽和度··Sw -1空気塊の氷過飽和度·KT温度KT温度·Aug零気物密応273.16KAug電の落下速度と直径の関係式に現れる係数0.64·βug電の落下速度と直径の関係式に現れる係数0.64·βug電の整下速度と直径の関係式に現れる係数0.5·入g電の粒径分布を表す逆指数関数の傾きm ⁻¹⁻¹ s ⁻¹ k ⁻¹ λ空気の熱性係数24×10°2Jm ⁻¹ s ⁻¹ K ⁻¹ ρ基本場の空気密度24×10°2Jm ⁻¹ s ⁻¹ K ⁻¹ ρ基本場の空気密度-Sem -3ρ基本場の地表面における密度-Sem -3ρ基本場の地表面における密度-Sem -3ρ基本場の地表面における密度-Sem -3基本場の地表面における密度-Sem -3基本場の地表面における密度-Sem -3基本場の地表面における密度-Sem -3基本場の地表面における密度-Sem -3基本場の地表面における密度-Sem -3基本場の地	n_{g0}	霰の y 切片濃度		m^{-4}
ML_{gr} 霰から雨水への融解の変換速度 s^{-1} ML_{sr} 雪から雨水への融解の変換速度 s^{-1} q_{vsi} 水の融点に対する飽和混合比 $kg kg^{-1}$ q_{vsi} 水に対する飽和混合比 $kg kg^{-1}$ R_v 水蒸気の気体定数 461.0 $J K^{-1} kg^{-1}$ S_c シュミット数 0.6 $ S_i - 1$ 空気塊の氷過飽和度 $ S_w - 1$ 空気塊の氷過飽和度 $ T$ 温度 K T_0 次の融点273.16K α_{ug} 霰の客下速度と直径の関係式に現れる係数 124 $m^{1-\beta_{ug}}s^{-1}$ β_{ug} 雪の客下速度と直径の関係式に現れる係数 0.64 $ \beta_{us}$ 雪の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の動粘性係数 2.4×10^{-2} $J m^{-1}s^{-1} K^{-1}$ ρ_0 基本場の地表面における密度 $m^{2}s^{-1}$	n_{s0}	雪の y 切片濃度		m^{-4}
ML_{sr} 雪から雨水への融解の変換速度 s^{-1} $q_{vsi}(T_0)$ 水の融点に対する飽和混合比 $kg kg^{-1}$ q_{vsi} 氷に対する飽和混合比 $kg kg^{-1}$ R_v 水蒸気の気体定数461.0 $J K^{-1} kg^{-1}$ S_c シュミット数 0.6 \cdot $S_i - 1$ 空気塊の氷過飽和度 \cdot \cdot $S_w - 1$ 空気塊の水過飽和度 \cdot \cdot T 温度 \cdot K T_0 激の融点 273.16 K α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $m^{1-\beta_{ug}} s^{-1}$ β_{ug} 霰の粒径分布を表す逆指数関数の傾き 0.64 \cdot λ_g 雪の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱化僅聚 $m^2 s^{-1}$ ρ_0 基本場の空気密度 $kg m^{-3}$	ML_{gr}	霰から雨水への融解の変換速度		s^{-1}
q_{vsi} 水の融点に対する飽和混合比 kg kg ⁻¹ q_{vsi} 水に対する飽和混合比 kg kg ⁻¹ R_v 水蒸気の気体定数 461.0 J K ⁻¹ kg ⁻¹ S_c シュミット数 0.6 - $S_i - 1$ 空気塊の氷過飽和度 - - $S_w - 1$ 空気塊の氷過飽和度 - - $S_w - 1$ 空気塊の水過飽和度 - - T 湿度 - - - T_0 激の酸点 273.16 K α_{ug} 霰の落下速度と直径の関係式に現れる係数 124 $n^{1-\beta_{ug}} s^{-1}$ β_{ug} 電の落下速度と直径の関係式に現れる係数 0.64 - β_{ug} 電の整下速度と直径の関係式に現れる係数 0.5 - β_{ug} 電の粒径分布を表す逆指数関数の傾き m ⁻¹ λ_s 雪の粒径分布を表す逆指数関数の傾き m ⁻¹ κ 空気の動粘性係数 2.4×10 ⁻² Jm ⁻¹ s ⁻¹ K ⁻¹ ρ 基本場の空気密鹿 編 m ² s ⁻¹ ρ 基本場の空気密鹿 K ga m ⁻³	ML_{sr}	雪から雨水への融解の変換速度		s^{-1}
q_{vsi} ※に対する飽和混合比kg kg ⁻¹ R_v 水蒸気の気体定数461.0J K ⁻¹ kg ⁻¹ S_c シュミット数0.6 S_i - 1空気塊の氷過飽和度 S_w - 1空気塊の水過飽和度 T 温度 T 温度 T_0 秋の融点273.16K α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $n^{1-\beta_{ug}} s^{-1}$ β_{ug} 雪の落下速度と直径の関係式に現れる係数0.64 β_{ug} 電の粒径分布を表す逆指数関数の傾き n^{-1} λ_g 雪の粒径分布を表す逆指数関数の傾き n^{-1} κ 空気の動粘性係数2.4×10 ⁻² Jm ⁻¹ s ⁻¹ K ⁻¹ ρ_0 基本場の空気密度kg m ⁻³	$q_{vs}\left(T_{0}\right)$	水の融点に対する飽和混合比		$\rm kg \ kg^{-1}$
R_v 水蒸気の気体定数461.0J K ⁻¹ kg ⁻¹ S_c シュミット数0.6 $S_i - 1$ 空気塊の氷過飽和度 $S_w - 1$ 空気塊の水過飽和度 T 温度K T_0 秋の融点273.16K α_{ug} 概の落下速度と直径の関係式に現れる係数124 $n^{1-\beta_{ug}} s^{-1}$ β_{ug} 需の落下速度と直径の関係式に現れる係数0.64 β_{ug} 電の粒径分布を表す逆指数関数の傾き n^{-1} λ_g 雪の粒径分布を表す逆指数関数の傾き n^{-1} λ_g 雪の粒径分布を表す逆指数関数の傾き n^{-1} κ 空気の動粘性係数2.4×10 ⁻² J m ⁻¹ s ⁻¹ K ⁻¹ ρ_0 基本場の地表面における密度kg m ⁻³	q_{vsi}	氷に対する飽和混合比		$\rm kg \ kg^{-1}$
S_c シュミット数0.6 $S_i - 1$ 空気塊の氷過飽和度	R_v	水蒸気の気体定数	461.0	$\rm J~K^{-1}~kg^{-1}$
$S_i - 1$ 空気塊の氷過飽和度ビレ $S_w - 1$ 空気塊の水過飽和度K T 温度K T_0 秋の融点273.16K α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $m^{1-\beta_{ug}} s^{-1}$ α_{us} 雪の落下速度と直径の関係式に現れる係数0.64 $1^{-\beta_{ug}} s^{-1}$ β_{ug} 雪の落下速度と直径の関係式に現れる係数0.5 m^{-1} λ_g 雪の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱粘性係数 2.4×10^{-2} $Jm^{-1}s^{-1}K^{-1}$ ρ 基本場の空気密度 $m^2 s^{-1}$ ρ_0 基本場の地表面における密度 $kg m^{-3}$	S_c	シュミット数	0.6	
$S_w - 1$ 空気塊の水過飽和度K T 温度K T_0 氷の融点273.16K α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $m^{1-\beta_{ug}} s^{-1}$ α_{us} 雪の落下速度と直径の関係式に現れる係数0.64 $m^{1-\beta_{us}} s^{-1}$ β_{ug} 霰の落下速度と直径の関係式に現れる係数0.5 m^{-1} β_{us} 雪の落下速度と直径の関係式に現れる係数 m^{-1} β_{us} 雪の粒径分布を表す逆指数関数の傾き m^{-1} λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $Jm^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ ρ_0 基本場の地表面における密度kg m^{-3}	$S_i - 1$	空気塊の氷過飽和度		
T温度K T_0 氷の融点273.16K α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $m^{1-\beta_{ug}} s^{-1}$ α_{us} 雪の落下速度と直径の関係式に現れる係数0.64- β_{ug} 霰の落下速度と直径の関係式に現れる係数0.5- β_{us} 雪の整下速度と直径の関係式に現れる係数0.5- λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率2.4×10 ⁻²⁰ J $m^{-1}s^{-1}K^{-1}$ ρ 基本場の空気密度 $m^2 s^{-1}$ ρ_0 基本場の地表面における密度 $kg m^{-3}$	$S_w - 1$	空気塊の水過飽和度		
T_0 氷の融点273.16K α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $m^{1-\beta_{ug}} s^{-1}$ α_{us} 雪の落下速度と直径の関係式に現れる係数17 $m^{1-\beta_{us}} s^{-1}$ β_{ug} 霰の落下速度と直径の関係式に現れる係数0.64 β_{us} 雪の落下速度と直径の関係式に現れる係数0.5 λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $Jm^{-1}s^{-1}K^{-1}$ ρ_0 基本場の空気密度kg m^{-3}	T	温度		Κ
α_{ug} 霰の落下速度と直径の関係式に現れる係数124 $m^{1-\beta_{ug}} s^{-1}$ α_{us} 雪の落下速度と直径の関係式に現れる係数17 $m^{1-\beta_{us}} s^{-1}$ β_{ug} 霰の落下速度と直径の関係式に現れる係数0.64 \cdot β_{us} 雪の落下速度と直径の関係式に現れる係数0.5 \cdot λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ ρ_0 基本場の空気密度kg m^{-3}	T_0	氷の融点	273.16	Κ
α_{us} 雪の落下速度と直径の関係式に現れる係数17 $m^{1-\beta_{us}} s^{-1}$ β_{ug} 霰の落下速度と直径の関係式に現れる係数0.64 β_{us} 雪の落下速度と直径の関係式に現れる係数0.5 λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率2.4×10 ⁻² $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ ρ_0 基本場の空気密度kg m^3	α_{ug}	霰の落下速度と直径の関係式に現れる係数	124	$m^{1-\beta_{ug}} s^{-1}$
β_{ug} 霰の落下速度と直径の関係式に現れる係数0.64 β_{us} 雪の落下速度と直径の関係式に現れる係数0.5 λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ ρ_0 基本場の空気密度kg m^3	α_{us}	雪の落下速度と直径の関係式に現れる係数	17	$\mathbf{m}^{1-\beta_{us}} \mathbf{s}^{-1}$
β_{us} 雪の落下速度と直径の関係式に現れる係数 0.5 λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ $\bar{\rho}$ 基本場の空気密度kg m^{-3} ρ_0 基本場の地表面における密度kg m^{-3}	β_{ug}	霰の落下速度と直径の関係式に現れる係数	0.64	
λ_g 霰の粒径分布を表す逆指数関数の傾き m^{-1} λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ $\bar{\rho}$ 基本場の空気密度kg m^{-3} ρ_0 基本場の地表面における密度kg m^{-3}	β_{us}	雪の落下速度と直径の関係式に現れる係数	0.5	
λ_s 雪の粒径分布を表す逆指数関数の傾き m^{-1} κ 空気の熱伝導率 2.4×10^{-2} $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ $\bar{\rho}$ 基本場の空気密度 kg m^{-3} ρ_0 基本場の地表面における密度 kg m^{-3}	λ_g	霰の粒径分布を表す逆指数関数の傾き		m^{-1}
κ 空気の熱伝導率 2.4×10^{-2} $J m^{-1} s^{-1} K^{-1}$ ν 空気の動粘性係数 $m^2 s^{-1}$ $\bar{\rho}$ 基本場の空気密度 $kg m^{-3}$ ρ_0 基本場の地表面における密度 $kg m^{-3}$	λ_s	雪の粒径分布を表す逆指数関数の傾き		m^{-1}
$ $	κ	空気の熱伝導率	$2.4{\times}10^{-2}$	${\rm J}~{\rm m}^{-1}~{\rm s}^{-1}~{\rm K}^{-1}$
$\bar{\rho}$ 基本場の空気密度 kg m ⁻³ ρ_0 基本場の地表面における密度 kg m ⁻³	ν	空気の動粘性係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
$ \rho_0 $ 基本場の地表面における密度 kg m ⁻³	$\bar{ ho}$	基本場の空気密度		$\rm kg~m^{-3}$
	$ ho_0$	基本場の地表面における密度		${\rm kg}~{\rm m}^{-3}$

(3) 雲氷の気相成長: VD_{vi}¹⁶

雲氷が気相成長することによる混合比の変化は、

$$VD_{vi} = \frac{q_v - q_{vsi}}{q_{vsw} - q_{vsi}} a_1 \left(\bar{m}_i\right)^{a_2} \frac{N_i}{\bar{\rho}}$$
(4.104)

 16 Ikawa and Saito (1991), Ikawa et al. (1991)

と与えられる。ここで、*n_i*は平均の雲氷の質量で、

$$\bar{m}_i = \frac{q_i \bar{\rho}}{N_i} \tag{4.105}$$

のように、 a_1, a_2 は Köenig (1971) にある温度依存するパラメーターであり、1°C 毎に、次表のように与えられる。

T_c [°C]	0	-10	-20	-30
0.0	0.000	7.434×10^{-10}	9.115×10^{-10}	5.333×10^{-10}
< -1.0	7.939×10^{-11}	1.812×10^{-09}	4.876×10^{-10}	4.834×10^{-10}
< -2.0	7.841×10^{-10}	4.394×10^{-09}	3.473×10^{-10}	
< -3.0	3.369×10^{-09}	9.145×10^{-09}	4.758×10^{-10}	
< -4.0	4.336×10^{-09}	1.725×10^{-10}	6.306×10^{-10}	
< -5.0	5.285×10^{-09}	3.348×10^{-08}	8.573×10^{-10}	
< -6.0	3.728×10^{-09}	1.725×10^{-08}	7.868×10^{-10}	
< -7.0	1.852×10^{-09}	9.175×10^{-09}	7.192×10^{-10}	
< -8.0	2.991×10^{-10}	$4.412\ \times 10^{-09}$	6.153×10^{-10}	
< -9.0	4.248×10^{-10}	2.252×10^{-09}	5.956×10^{-10}	

温度依存パラメーター a₁

温度依存パラメーター a₂

T_c [°C]	0	-10	-20	-30
0.0	0.000	4.318×10^{-01}	4.447×10^{-01}	4.382×10^{-01}
< -1.0	4.006×10^{-01}	4.771×10^{-01}	4.126×10^{-01}	4.361×10^{-01}
< -2.0	4.831×10^{-01}	5.183×10^{-01}	3.960×10^{-01}	
< -3.0	5.320×10^{-01}	5.463×10^{-01}	4.149×10^{-01}	
< -4.0	5.307×10^{-01}	5.651×10^{-01}	4.320×10^{-01}	
< -5.0	5.319×10^{-01}	5.813×10^{-01}	4.506×10^{-01}	
< -6.0	5.249×10^{-01}	5.655×10^{-01}	4.483×10^{-01}	
< -7.0	4.888×10^{-01}	5.478×10^{-01}	4.460×10^{-01}	
< -8.0	3.894×10^{-01}	5.203×10^{-01}	4.433×10^{-01}	
< -9.0	4.047×10^{-01}	4.906×10^{-01}	4.413×10^{-01}	

ここで用いられた記号の意味は、以下のとおりである。

q_{vsi}	氷に対する飽和混合比	$\rm kg \ kg^{-1}$
q_{vsw}	水に対する飽和混合比	${ m kg}~{ m kg}^{-1}$
T_c	セルシウス温度	$^{\circ}\mathrm{C}$
$\bar{ ho}$	基本場の空気密度	${ m kg}~{ m m}^{-3}$

粒子間衝突: CL

ここでは、さまざまな粒子間の衝突によりある粒子が捕捉され、捕捉した粒子が成長するプロセスを定式 化する。粒子間衝突には、先に定義した粒子のカテゴリーに対して、次のようなプロセスが考えられる。表 中の「〇」はモデルで考慮する、「×」は考慮しないことを示す。

プロセス	消耗源	成長源	記号	意味	モデル
雲水の衝突併合	q_c	q_i	CL_{ci}	雲氷が雲水を衝突併合して成長	×
	q_c	q_s	CL_{cs}	雪が雲水を衝突併合して成長	\bigcirc
	q_c	q_g	CL_{cg}	霰が雲水を衝突併合して成長	\bigcirc
	q_c	q_r	CL_{cr}	雨水が雲水を衝突併合して成長	\bigcirc
雨水の衝突併合	q_r	q_i	CL_{ri}	雲氷が雨水を衝突併合して成長	0
	q_r	q_s	CL_{rs}	雪が雨水を衝突併合して成長	\bigcirc
	q_r	q_g	CL_{rg}	霰が雨水を衝突併合して成長	\bigcirc
雲氷の衝突併合	q_i	q_r	CL_{ir}	雨水が雲氷を衝突併合して成長	0
	q_i	q_s	CL_{is}	雪が雲氷を衝突併合して成長	\bigcirc
	q_i	q_g	CL_{ig}	霰が雲氷を衝突併合して成長	\bigcirc
雪の衝突併合	q_s	q_r	CL_{sr}	雨水が雪を衝突併合して成長	0
	q_s	q_g	CL_{sg}	霰が雪を衝突併合して成長	0

以下の節では、落下速度が十分大きな雨水・雪・霰の間の衝突、雨水・雪・霰と落下速度が相対的に無視 できるほど小さい雲水・雲氷との衝突、および、過冷却雨滴が氷晶と衝突して霰になるものについて定式化 する¹⁷。数濃度のみを変化させる衝突併合(凝集)については、節を改めて述べる。

(1) 雨水、雪、霰の間の衝突併合: CL_{xy} ($x, y = r, s, g; x \neq y$)

雨水、雪、霰などの降水粒子間の衝突併合による混合比と数濃度の変化を、以下のように定式化する。

$$CL_{xy} = \pi^2 \frac{\rho_x}{\bar{\rho}} E_{xy} \sqrt{\left(\bar{U}_x - \bar{U}_y\right)^2 + \alpha \bar{U}_x \bar{U}_y} n_{x0} n_{y0} \left(\frac{5}{\lambda_x^6 \lambda_y} + \frac{2}{\lambda_x^5 \lambda_y^2} + \frac{0.5}{\lambda_x^4 \lambda_y^3}\right)$$
(4.106)

$$CL_{xy}^{N} = \frac{\pi}{2\bar{\rho}} E_{xy} \sqrt{\left(\bar{U}_{x} - \bar{U}_{y}\right)^{2} + \alpha \bar{U}_{x} \bar{U}_{y}} n_{x0} n_{y0} \left(\frac{1}{\lambda_{x}^{3} \lambda_{y}} + \frac{1}{\lambda_{x}^{2} \lambda_{y}^{2}} + \frac{1}{\lambda_{x} \lambda_{y}^{3}}\right)$$
(4.107)

なお、 $x, y = r, s, g; x \neq y$ である。

ここで用いられた記号の意味は、以下のとおりである。

E_{xy}	粒子の捕捉率		
n_{x0}	カテゴリ x の y 切片濃度		m^{-4}
\bar{U}_x	カテゴリ x の質量の重みをつけた平均落下速度		${\rm m~s^{-1}}$
α	補正項の係数	0.04	
λ_x	カテゴリ x の粒径分布を表す逆指数関数の傾きパラメータ		m^{-1}
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$
$ ho_x$	カテゴリ x の粒子の密度		${\rm kg}~{\rm m}^{-3}$

¹⁷村上 (1999), Lin et al. (1983), Murakami (1990), Ikawa and Saito (1991)

(2) 雨水、雪、霰と雲水、雲氷の間の衝突併合: CL_{cy}, CL_{iy} (y = r, s, g)

雲水や雲氷(氷晶)は雨水、雪、霰といった降水粒子に比べて落下速度が小さいので、次のように表される。

$$CL_{xy} = \frac{\pi}{4} \bar{E}_{xy} n_{y0} q_x \alpha_{uy} \Gamma \left(3 + \beta_{uy}\right) \lambda_y^{-(3+\beta_{uy})} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\frac{1}{2}}$$
(4.108)

ここで、雲氷との間の衝突併合の平均的な捕捉率 \bar{E}_{iy} は一定値を用いるが、雲水との間の衝突併合の平均的な捕捉率 \bar{E}_{cy} は、

$$\bar{E}_{cy} = \frac{Stk^2}{\left(Stk + 0.5\right)^2} \tag{4.109}$$

のように与えられる。*Stk* は雲水または雲氷と降水粒子の平均半径から求めたストークス数である。Ikawa and Saito (1991) では、次のようにしている。

$$Stk = \bar{D}_c^2 \rho_w \frac{\bar{U}_y}{9\mu \bar{D}_y} \tag{4.110}$$

ここで用いられた記号の意味は、以下のとおりである。

D_c	雲水の粒子の直径		m
D_y	カテゴリ y の粒子の直径		m
n_{y0}	カテゴリ y の y 切片濃度		m^{-4}
$ar{U}_y$	カテゴリ y の質量の重みをつけた平均落下速度		${\rm m~s^{-1}}$
α_{uy}	カテゴリ y の粒子の落下速度と直径の関係式に現れる係数		$\mathbf{m}^{1-\beta_{uy}} \ s^{-1}$
β_{uy}	カテゴリ y の粒子の落下速度と直径の関係式に現れる係数		
λ_y	カテゴリ y の粒径分布を表す逆指数関数の傾きパラメータ		m^{-1}
μ	空気の粘性係数		$\rm kg~m^{-1}~s^{-1}$
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$
$ ho_0$	基本場の地表面における密度		${\rm kg}~{\rm m}^{-3}$
$ ho_w$	水の密度	1×10^3	${\rm kg}~{\rm m}^{-3}$

(3) 過冷却雨滴が氷晶と衝突して霰を形成する過程: CL_{ri}

過冷却雨滴が氷晶と衝突して霰になることによる混合比と数濃度の変化は、雨滴は瞬間的に凍結するとして、次のように与えられる¹⁸。

$$CL_{ri} = \frac{\pi^2}{24} E_{ir} N_i n_{r0} \alpha_{ur} \Gamma (6 + \beta_{ur}) \lambda_r^{-(6 + \beta_{ur})} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\frac{1}{2}}$$
(4.111)

$$CL_{ri}^{N} = \frac{\pi}{4\bar{\rho}} E_{ir} N_{i} n_{r0} \alpha_{ur} \Gamma \left(3 + \beta_{ur}\right) \lambda_{r}^{-(3+\beta_{ur})} \left(\frac{\rho_{0}}{\bar{\rho}}\right)^{\frac{1}{2}}$$
(4.112)

ここで用いられた記号の意味は、以下のとおりである。

E_{ir}	粒子の捕捉率	1.0		
n_{r0}	雨水の y 切片濃度	$8.0 imes 10^6$	m^{-4}	
α_{ur}	雨水の落下速度と直径の関係式に現れる係数	842	$\mathbf{m}^{1-\beta_{ur}} \mathbf{s}^{-1}$	
β_{ur}	雨水の落下速度と直径の関係式に現れる係数	0.8		
λ_r	雨水の粒径分布を表す逆指数関数の傾き		m^{-1}	
$ar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$	
$ ho_0$	基本場の地表面における密度		${\rm kg}~{\rm m}^{-3}$	

(4) 衝突併合における捕捉率のまとめ: E_{xy} ¹⁹

次表に、(1)~(3)に出てくる粒子間の衝突における捕捉率 E_{xy} をまとめておく。

E_{cr}	雨水が雲水を衝突併合する捕捉率	$Stk^2 / (Stk + 0.5)^2$
E_{cs}	雪が雲水を衝突併合する捕捉率	$Stk^{2}/(Stk + 0.5)^{2}$
E_{cg}	霰が雲水を衝突併合する捕捉率	$Stk^{2}/(Stk+0.5)^{2}$
E_{rs}	雪が雨水を衝突併合する捕捉率	1.0
E_{rg}	霰が雨水を衝突併合する捕捉率	1.0
E_{ir}	雨水が雲氷を衝突併合する捕捉率	1.0
E_{is}	雪が雲氷を衝突併合する捕捉率	1.0
E_{ig}	霰が雲氷を衝突併合する捕捉率	0.1
E_{sr}	雨水が雪を衝突併合する捕捉率	1.0
E_{sg}	霰が雪を衝突併合する捕捉率	0.001

(5) 雪と雨滴の衝突後のカテゴリー配分率: α_{rs}

雪と雨滴が 0 °C 以下の層で衝突して合体した粒子が、どのカテゴリーに分類されるかは複雑である。ここでは、(4.31) と (4.32) に現れる雪と霰の配分率 α_{rs} を、雨水と雪の平均質量 \bar{m}_r と \bar{m}_s を用いて、

$$\alpha_{rs} = \frac{\bar{m}_s^2}{\bar{m}_s^2 + \bar{m}_r^2} \tag{4.113}$$

のように与える。ここで、雨水と雪の平均質量 \bar{m}_r と \bar{n}_s は、

$$\bar{m}_r = \rho_r \left(\frac{4}{\lambda_r}\right)^3 \tag{4.114}$$

 $^{^{19}}$ Ikawa and Saito (1991), Ikawa et al. (1991)

$$\bar{m}_s = \rho_s \left(\frac{4}{\lambda_s}\right)^3 \tag{4.115}$$

のように与えられる。これを用いて雨滴と雪の衝突から霰が生成される割合は $(1 - \alpha_{rs})$ になる。ただし、 (4.113) による配分は便宜的なものである。

霰の生成: PG

霰の生成はそれ以外の粒子との衝突で起こるので、「粒子間衝突」の項で述べることであるが、霰の生成 は重要な問題であり、それだけで複雑であるので、あらためて項を設けて説明する。

霰の生成には乾燥成長と湿潤成長がある。前者は衝突併合した過冷却雲粒がすべて瞬間的に凍る場合で、 霰の表面はぬれていない。後者は捕捉した過冷却雲粒が放出する潜熱で、水滴の一部分が未凍結のまま残り、 霰の表面がぬれてくる場合である。

乾燥成長では過冷却水滴はすべて成長に寄与するが、霰と衝突する雲氷や雪の捕捉率は小さく、成長には ほとんど寄与しない。一方で、湿潤成長では捕捉された過冷却水のうち凍結する量は顕熱・潜熱の収支によっ て決まり、氷晶や雪は効率良く捕捉される。

乾燥成長は、

$$PG_{dry} = CL_{cg} + CL_{rg} + CL_{ig} + CL_{sg}$$

$$(4.116)$$

で与えられる20。一方で、湿潤成長は、

$$PG_{wet} = \frac{2\pi \left[\kappa T_s + \mathcal{L}_v \mathcal{D}_v \bar{\rho} \left(q_{vs} \left(T_0\right) - q_v\right)\right]}{\bar{\rho} \left(\mathcal{L}_f - C_w T_s\right)} VENT_g + \left(CL'_{ig} + CL'_{sg}\right) \left(1 + \frac{C_i T_s}{\mathcal{L}_f - C_w T_s}\right) \quad (4.117)$$

で与えられる。ここで、通風係数 $VENT_g$ は (4.103) で与えられる。霰が乾燥成長をとるか湿潤成長をとる かは、 $PG_{dry} \ge PG_{wet}$ の大小により、次のように決める。

 $PG_g = PG_{dry}, \qquad PG_{dry} \le PG_{wet}$ (4.118)

$$PG_q = PG_{wet}, \qquad PG_{dry} > PG_{wet}$$

$$(4.119)$$

これらの式で用いられた記号の意味は、以下のとおりである。

CL_{cg}	雲水が雲水を衝突併合する成長速度	s^{-1}
CL_{ig}	雲氷が雲水を衝突併合する成長速度	s^{-1}
$CL_{ig}^{'}$	霰が湿潤成長するとき雲氷が雲水を衝突併合する成長速度	s^{-1}
CL_{rg}	雨水が雲水を衝突併合する成長速度	s^{-1}
CL_{sg}	雪が雲水を衝突併合する成長速度	s^{-1}

²⁰村上 (1999)

$CL_{sg}^{'}$	霰が湿潤成長するとき雪が雲水を衝突併合する成長速度		s^{-1}
C_i	氷の定圧比熱	$2.0{\times}10^3$	$\mathrm{J}~\mathrm{K}^{-1}\mathrm{kg}^{-1}$
C_w	水の定圧比熱	$4.17{\times}10^3$	$\mathrm{J}~\mathrm{K}^{-1}\mathrm{kg}^{-1}$
${\mathcal D}_v$	水蒸気の拡散係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
\mathcal{L}_{f}	水の融解の潜熱		$\rm J~kg^{-1}$
\mathcal{L}_v	水の蒸発の潜熱		$\rm J~kg^{-1}$
$q_{vs}\left(T_{0}\right)$	水の融点に対する飽和混合比		$\rm kg \ kg^{-1}$
T	温度		Κ
T_0	氷の融点	273.16	Κ
T_s	過冷却温度 $(T_0 - T)$		Κ
κ	空気の熱伝導率	2.4×10^{-2}	${\rm J~m^{-1}~s^{-1}~K^{-1}}$
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$

凝集: AG

凝集も霰の生成と同様粒子間衝突の範疇に入るものであるが、改めて項を別にする。

凝集は、雲氷すなわち氷晶どうしの衝突併合による雲氷の数濃度の減少と、雪すなわち雪片どうしの衝突 併合による雪の数濃度の減少の2つを考える。このプロセスおいては、混合比の生成・消滅はないので、数 濃度のみを変化させる。

(1) 雲氷どうしの凝集: AG_i^{N 21}

雲氷(氷晶)どうしの凝集による数濃度の減少は、

$$AG_i^N = \left[\frac{d}{dt}\left(\frac{N_i}{\bar{\rho}}\right)\right]_{aggr} = -\frac{c_1}{2\bar{\rho}}N_i \tag{4.120}$$

のように表せる。ここで、c1は次のように表わされる。

$$c_1 = \frac{\bar{\rho}q_i \alpha_{ui} E_{ii} X}{\rho_i} \left(\frac{\rho_0}{\bar{\rho}}\right)^{\frac{1}{3}}$$
(4.121)

これらの式で用いられた記号の意味は、以下のとおりである。

E_{ii}	氷晶どうしの捕捉率	0.1	
X	氷晶の落下速度のスペクトル分散	0.25	
α_{ui}	雲氷の落下速度と直径の関係式に現れる係数	700	$m^{1-\beta_{ui}} s^{-1}$
β_{ui}	雲氷の落下速度と直径の関係式に現れる係数	1.0	
$\bar{ ho}$	基本場の空気密度		${ m kg}~{ m m}^{-3}$
ρ_0	基本場の地表面における空気密度		$\mathrm{kg}~\mathrm{m}^{-3}$
$ ho_i$	雲氷の密度	$5.0{ imes}10^2$	${ m kg}~{ m m}^{-3}$

²¹村上 (1999), Ikawa and Saito (1991)

(2) 雪どうしの凝集: AG^N_s²²

雪(雪片)どうしの凝集による数濃度の減少は次のように表せる。このプロセスにおいても混合比 q_s に変 化はなく、数濃度 N_s のみが減少する。

$$AG_s^N = \left[\frac{d}{dt}\left(\frac{N_s}{\bar{\rho}}\right)\right]_{aggr} = -\frac{1}{\bar{\rho}}\frac{\alpha_{us}E_{ss}I\left(\beta_{us}\right)}{4\times720}\pi^{\frac{1-\beta_{us}}{3}} \bar{\rho}^{\frac{2+\beta_{us}}{3}} \rho_s^{\frac{-2-\beta_{us}}{3}} q_s^{\frac{2+\beta_{us}}{3}} N_s^{\frac{4-\beta_{us}}{3}} \tag{4.122}$$

ここで、

$$I(\beta_{us}) = \int_0^\infty \int_0^\infty x^3 y^3 (x+y)^2 \left| x_{us}^\beta - y_{us}^\beta \right| \exp\left[-(x+y) \right] \, dxdy \tag{4.123}$$

である。これは Gauss の超幾何関数²³を用いて、次のように求められる。

$$I(\beta_{us}) = \Gamma(\beta_{us}) 2^{1-d} \sum_{i=1}^{3} C_i \left[\frac{F(1,d;8-i;0.5)}{7-i} - \frac{F(1,d;4+\beta_{us};0.5)}{3+\beta_{us}+i} \right]$$
(4.128)

ここで、

$$d = 10 + \beta_{us}$$
$$C_1 = 1$$
$$C_2 = 3$$
$$C_3 = 1$$

である。ここでは、 $I(\beta_{us})$ の代表的な値として(Ikawa and Saito, 1991; Mizuno, 1990)、次の値を用いる。

$$F(x,a;b;c) = 1 + \frac{a \cdot b}{c} \frac{x}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{x^2}{2!} + \cdots$$
(4.124)

である。ただし、 $c \neq 0, -1, -2, \cdots$ である。ポックハイマーの記号、

$$(a)_n = a(a+1)(a+2)\cdots(a+n-1) = \frac{(a+n-1)!}{(a-1)!}$$
(4.125)

$$(a)_0 = 1$$
 (4.126)

を用いると次のように表される。

$$F(x,a;b;c) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!}$$
(4.127)

この超幾何関数の特別な極限として合流型超幾何関数がある。

²²村上 (1999), Ikawa and Saito (1991)

 $^{2^{3}}$ 超幾何関数 (hypergeometric function) とは、2 階線形常微分方程式で $x = 0, 1, \infty$ に確定特異点を持つ超幾何方程式の解のうち の 1 つ、

β_{us}	0.4	0.5	0.6
$I\left(\beta_{us} ight)$	1108	1610	2566

これらの式で用いられた記号の意味は、以下のとおりである。

E_{ss}	雪どうしの捕捉率	0.1	
α_{us}	雪の落下速度と直径の関係式に現れる係数	17	$m^{1-\beta_{us}} s^{-1}$
β_{us}	雪の落下速度と直径の関係式に現れる係数	0.5	
$ar{ ho}$	基本場の空気密度		$\rm kg \ m^{-3}$
$ ho_s$	雪の密度	$8.4{ imes}10^1$	${\rm kg}~{\rm m}^{-3}$

カテゴリー変換: CN

あるカテゴリーの粒子が別のカテゴリーの粒子に変換されることを CN_{xy} で表現する。例えば Kessler (1969) の雲水から雨水への変換は、カテゴリー変換を最初に定式化したものの一つである。ここで考えるカテゴリー 変換は次のものである。

プロセス	消耗源	成長源	記号	意味
雲水から雨水への変換	q_c	q_r	CN_{cr}	併合成長による
雲氷から雪への変換	q_i	q_s	CN_{is}	昇華凝結と凝集による
雪から霰への変換	q_s	q_g	CN_{sg}	雲粒捕捉成長による
雪から雹への変換	q_s	q_h	CN_{sh}	雲粒捕捉成長による
霰から雹への変換	q_g	q_h	CN_{gh}	雲粒捕捉成長による
雪から霰への変換	q_s	q_g	CN_{sg}	雨水の凍結による
雪から雹への変換	q_s	q_h	CN_{sh}	雨水の凍結による
霰から雹への変換	q_g	q_h	CN_{gh}	雨水の凍結による

ここでは、 $CN_{cr}, CN_{is}, CN_{sq}$ についての変換を考える。

(1) 雲水から雨水への変換: CN_{cr}²⁴

雲水から雨水への変換は雲粒どうしの衝突併合成長による。このプロセスを最初にパラメーター化したの は Kessler (1969) である。このプロセスについては Berry (1968), Berry and Reinhardt (1974) によって詳 細に調べられており、これに基づく変換の方式が用いられることが最近では多い。

(a) Berry (1968), Berry and Reinhardt (1974) に基づくもの 25

Berry (1968), Berry and Reinhardt (1974) に基づく変換の方式は、

$$CN_{cr} = \begin{cases} \frac{0.104gE_{cc}}{\mu \left(N_c \rho_w\right)^{\frac{1}{3}}} \left(\bar{\rho}^4 q_c^7\right)^{\frac{1}{3}}, & q_c \ge q_{cm} \\ 0, & q_c < q_{cm} \end{cases}$$
(4.129)

 $^{^{24}}$ 村上 (1999), Lin et al. (1983), Ferrier (1994), Ikawa and Saito (1991)

となる。ここで、雲水同士の捕捉率を $E_{cc} = 0.55$ とする。また、雲水から雨水への変換が起こるための臨界 雲水混合比 q_{cm} は、

$$q_{cm} = \frac{\rho_w}{6\bar{\rho}} \pi D_{cm}^3 N_c \tag{4.130}$$

である。ここで、 D_{cm} は雲水の臨界平均直径で、 $D_{cm} = 20$ [μ m] 程度を用いる。また、雲水の数濃度 N_c は平均的な値 $N_c = 10^8$ [m⁻³] を用いるが、本来はこれは時間発展方程式の予報変数として時間積分により 計算される方がよい。

(b) Kessler (1969)の併合成長²⁶

最も古典的なパラメタリゼーションで、現在でも多くのモデルで用いられている方法である。

$$CN_{cr} = a (q_c - q_{cm}) H (q_c - q_{cm})$$
(4.131)

ここで、*H* は階段関数で、通常は $a = 10^{-3}$ [s⁻¹], $q_{cm} = 10^{-3}$ [kg kg⁻¹] が用いられる。また、Cotton and Anthes (1989) は $a \ge q_{cm} \ge q_c$ の関数として与え、次のようにした。

$$a = \pi E_{cc} U_{dc} N_c D_c^2 = 1.3 \times q_c^{\frac{4}{3}} N_c^{-\frac{1}{3}} \left(\frac{\rho_0}{\bar{\rho}}\right)$$
(4.132)

$$q_{cm} = \frac{4\pi\rho_w N_c D_{cm}^3}{3\bar{\rho}} = 4 \times 10^{-12} N_c, \qquad D_{cm} = 10^{-5} \text{ [m]}$$
(4.133)

(c) Lin et al. (1983) の方法

Berry (1968) の方式を改良して、Lin et al. (1983) は次の方式を用いた。

$$CN_{cr} = \bar{\rho} \left(q_c - q_{cm}\right)^2 \left[1.2 \times 10^{-4} + 1.569 \times 10^{-12 \frac{N_c}{\sigma^2 (q_c - q_{cm})}} \right]$$
(4.134)

ここで、 σ^2 は雲水の数濃度分布の分散(=0.15)であり、また、 $q_{cm} = 2 \times 10^{-3}$ [kg kg⁻¹] とする。

(a)~(c) で用いられた他の記号の意味は、以下のとおりである。

g	重力加速度	9.8	${\rm m~s^{-2}}$
N_c	雲粒の数濃度	$1{\times}10^{8}$	m^{-3}
μ	空気の粘性係数		$\rm kg~m^{-1}~s^{-1}$
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$
$ ho_0$	基本場の地表面における密度		${\rm kg}~{\rm m}^{-3}$
$ ho_w$	水の密度	$1{\times}10^3$	${\rm kg}~{\rm m}^{-3}$

²⁶Ikawa and Saito (1991)

(2) 雲氷から雪への変換: CN_{is}

雲氷(氷晶)から雪への変換は、氷晶の昇華成長と凝集の2つのプロセスによって起こるとして定式化する²⁷。

まず、昇華凝結成長により半径 \bar{R}_i の氷晶が、半径 R_{s0} の雪になるまでにかかる時間 Δt_{is1} は、

$$\Delta t_{is1} = \frac{R_{s0}^2 - \bar{R}_i^2}{2a_1} \rho_i \tag{4.135}$$

である。ここで、a1は(4.100)や(4.97)に現れるものと同様に、

$$a_1 = (S_i - 1) \left(\frac{\mathcal{L}_s^2}{\kappa R_v T^2} + \frac{1}{\bar{\rho} q_{vsi} \mathcal{D}_v} \right)^{-1}$$

$$(4.136)$$

のように与えられる。これらを用いて、昇華凝結成長による雲氷から雪への単位時間あたりの混合比の変化量(変換率) *CN*^{dep}_{is} は、

$$CN_{is}^{dep} = \frac{q_i}{\Delta t_{is1}} \tag{4.137}$$

となる。

次に、凝集による変換率は、雲氷が凝集によって半径 \bar{R}_i から半径 R_{s0} の雪になるまでにかかる時間 Δt_{is2} を、 $\rho_i = const.$ としたときの雲氷の数濃度が N_i から $N_i (R_i / R_{s0})^3$ に減少するのに必要な時間であるとすれば、

$$\Delta t_{is2} = \frac{2}{c_1} \log \left(\frac{R_{s0}}{\bar{R}_i}\right)^3 \tag{4.138}$$

となる。ここで、*c*₁は(4.121)で与えられる。これより、凝集による雲氷から雪への単位時間あたりの混合 比の変化量(変換率)は、

$$CN_{is}^{agg} = \frac{q_i}{\Delta t_{is2}} \tag{4.139}$$

である。これらを用いて、雲氷から雪への変換率 CNis は、

$$CN_{is} = CN_{is}^{dep} + CN_{is}^{agg} \tag{4.140}$$

となる。

²⁷村上 (1999), Murakami (1990), Ikawa and Saito (1991)

ここで用いられた記号の意味は、以下のとおりである。

\mathcal{D}_v	水蒸気の拡散係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
\mathcal{L}_s	水の昇華の潜熱		$\rm J~kg^{-1}$
q_{vsi}	氷に対する飽和混合比		$\rm kg \ kg^{-1}$
R_v	水蒸気の気体定数	461.0	$\rm J~K^{-1}~kg^{-1}$
$S_i - 1$	空気塊の氷過飽和度		
T	温度		Κ
κ	空気の熱伝導率	2.4×10^{-2}	$J m^{-1} s^{-1} K^{-1}$
$ar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$
$ ho_i$	雲氷の密度	$5.0{ imes}10^2$	$\rm kg \ m^{-3}$

(3) 雪から霰への変換: CN_{sg}

雪から霰への変換は、riming と embryo の効果を考慮する²⁸。単位時間あたりに、riming の効果により雪から霰に変換されることによる混合比の変化率は、

$$CN_{sg}^{rim} = \frac{3\pi\rho_0 \left(\bar{\rho}q_c\right)^2 E_{cs}^2 \alpha_{us}^2 \Gamma \left(2\beta_{us} + 2\right)}{8\bar{\rho} \left(\rho_g - \rho_s\right) \lambda_s^{2\beta_{us} + 1}} N_s \tag{4.141}$$

で与えられ、embryoの効果による変化率は、

$$CN_{sg}^{emb} = \frac{\rho_s}{\rho_g - \rho_s} \frac{3\pi\rho_0 \left(\bar{\rho}q_c\right)^2 E_{cs}^2 \alpha_{us}^2 \Gamma\left(2\beta_{us} + 2\right)}{8\bar{\rho}\left(\rho_g - \rho_s\right) \lambda_s^{2\beta_{us} + 1}} N_s \tag{4.142}$$

で与えられる。よって、雪から霰への変換率 CNsg は、

$$CN_{sg} = CN_{sg}^{rim} + CN_{sg}^{emb} = \frac{\rho_g}{\rho_g - \rho_s} \frac{3\pi\rho_0 \left(\bar{\rho}q_c\right)^2 E_{cs}^2 \alpha_{us}^2 \Gamma\left(2\beta_{us} + 2\right)}{8\bar{\rho} \left(\rho_g - \rho_s\right) \lambda_s^{2\beta_{us} + 1}} N_s$$
(4.143)

となる。

また、このときの数濃度の変化率は、

$$CN_{sg}^{N} = \frac{\rho_{0}}{\bar{\rho}} \left[\frac{3\pi \alpha_{us} E_{cs} \bar{\rho} q_{c}}{2\left(\rho_{g} - \rho_{s}\right)} \right] N_{s}$$

$$\tag{4.144}$$

と与えられる。

 28 Murakami (1990)

E_{cs}	雪が雲水を衝突併合する捕捉率	$Stk^2 / (Stk + 0.5)^2$	
α_{us}	雪の落下速度と直径の関係式に現れる係数	17	$m^{1-\beta_{us}} s^{-1}$
β_{us}	雪の落下速度と直径の関係式に現れる係数	0.5	
λ_s	雪の粒径分布を表す逆指数関数の傾き		m^{-1}
$\bar{ ho}$	基本場の空気密度		$\rm kg \ m^{-3}$
$ ho_0$	基本場の地表面における密度		$\rm kg \ m^{-3}$
$ ho_g$	霰の密度	3.0×10^2	$\rm kg \ m^{-3}$
$ ho_s$	雪の密度	$8.4{ imes}10^1$	$\rm kg \ m^{-3}$

ここで用いられた記号の意味は、以下のとおりである。

固体粒子の融解: ML

(1) 雲氷の融解: *ML_{ic}*

雲氷(氷晶)は、粒径が非常に小さいので、気温が $T > T_0$ で瞬間的に融解して雲水に変換されると仮定 する。すなわち、

 $T_c > T_0 \mathcal{O} \mathcal{E} \mathfrak{S},$

$$ML_{ic} = \frac{q_i}{2\Delta t} \tag{4.145}$$

のように、中点蛙飛び法の時間間隔 2∆t の間のすべての雲氷が雲水に変換される。

(2) 雪・霰の融解: *ML_{sr}, ML_{gr}*

雪と霰については、融解したものはすべて分離して雨水になると仮定し、出入りする熱の収支に基づいて、 固体粒子から雨への変換率 ML_{xr} (x = s, g)を決める²⁹。すなわち、次のように与えられる。

$$ML_{xr} = \begin{cases} \frac{2\pi}{\bar{\rho}\mathcal{L}_{f}} \left[\kappa T_{c} + \mathcal{L}_{v}\mathcal{D}_{v}\bar{\rho}\left(q_{v} - q_{vs}\left(T_{0}\right)\right)\right] VENT_{x} + \frac{C_{w}T_{c}}{\mathcal{L}_{f}}\left(CL_{cx} + CL_{rx}\right), & T > T_{0} \\ 0, & T \leq T_{0} \end{cases}$$

$$(4.146)$$

このとき、 $T > T_0$ であっても $ML_{xr} < 0$ であれば融解は起こらず、 $ML_{xr} = 0$ であることに注意しなければならない。ここで、通風係数 $VENT_x$ は (4.103) で与えられるものと同様である。

(1),(2) で用いられた記号の意味は、以下のとおりである。

CL_{cx}	カテゴリ x の粒子が雲水を衝突併合する成長速度		s^{-1}
CL_{rx}	カテゴリ x の粒子が雨水を衝突併合する成長速度		s^{-1}
C_w	水の定圧比熱	$4.17{ imes}10^3$	$\rm J~K^{-1}~kg^{-1}$

 29 Ikawa and Saito (1991)

\mathcal{D}_v	水蒸気の拡散係数		$\mathrm{m}^2~\mathrm{s}^{-1}$
\mathcal{L}_{f}	水の融解の潜熱		$\rm J~kg^{-1}$
\mathcal{L}_v	水の蒸発の潜熱		$\rm J~kg^{-1}$
$q_{vs}\left(T_{0}\right)$	水の融点に対する飽和混合比		$\rm kg \ kg^{-1}$
T	温度		Κ
T_0	氷の融点	273.16	Κ
T_c	セルシウス温度		$^{\circ}\mathrm{C}$
κ	空気の熱伝導率	$2.4{\times}10^{-2}$	${\rm J~m^{-1}~s^{-1}~K^{-1}}$
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$

雨滴の凍結: FR

雨滴の凍結は瞬間的に起こるとする。雹のカテゴリーを考えていない場合には、凍結したものは霰のカテ ゴリーに配分される。雹のカテゴリーがある場合は雹に配分される。

固体粒子の融解において、融解したものはすべて分離すると仮定したので、凍結は核形成過程のみによって起こると考え、 FR_{rg} は Bigg (1953)の実験式に基づいて、混合比の変化率は³⁰、

$$FR_{rg} = 20\pi^2 B' n_{r0} \frac{\rho_w}{\bar{\rho}} \left[\exp\left(A'T_s\right) - 1 \right] \lambda_r^{-7}$$
(4.147)

のように、また、数濃度の変化率は、

$$FR_{rg}^{N} = \frac{\pi}{6\bar{\rho}}B'n_{r0}\left[\exp\left(A'T_{s}\right) - 1\right]\lambda_{r}^{-4}$$
(4.148)

のように与えられるとした。水と氷の混合物のカテゴリーを仮定し、冷却によって水の一部分が凍結するこ とは考慮しない。

ここで用いられた記号の意味は、以下のとおりである。

A'	Biggの実験式の係数	0.66	K^{-1}
B'	Biggの実験式の係数	100.0	${\rm m}^{-3}~{\rm s}^{-1}$
n_{r0}	雨水の y 切片濃度	$8.0 imes 10^6$	m^{-4}
T	温度		Κ
T_0	氷の融点	273.16	Κ
T_s	過冷却温度 $(T_0 - T)$		Κ
λ_r	雨水の粒径分布を表す逆指数関数の傾き		m^{-1}
$\bar{ ho}$	基本場の空気密度		${\rm kg}~{\rm m}^{-3}$
$ ho_w$	水の密度	1×10^{3}	${\rm kg}~{\rm m}^{-3}$

³⁰Lin et al. (1983), 村上 (1999)

雪・霰からの水の剥離: SH

このモデルでは雪や霰は部分的に液体の水を含むことを考慮しないので、融解した水はすべて雪や氷から 剥離して雨水になると考える。それは、

 $T > T_0 \mathcal{O} \mathcal{E}$

$$SH_{sr} = CL_{cs} + CL_{rs} \tag{4.149}$$

$$SH_{gr} = CL_{cg} + CL_{rg} \tag{4.150}$$

霰の湿潤成長が起こるとき $(T \leq T_0$ においても)、

$$SH_{gr} = CL_{cg} + CL_{rg} + CL'_{ig} + CL'_{sg} - PG_{wet}$$
(4.151)

のように与えられる。

なお、Ferrier (1994)は、雪、霰、雹(凍結氷)の湿潤成長を時間発展方程式で定式化し、濡れた雪、濡れ た霰、濡れた雹(水と氷の混合物)を考慮している。今後はこのような定式化が必要であろう。

ここで用いられた記号の意味は、以下のとおりである。

CL_{cg}	霰が雲水を衝突併合する成長速度		s^{-1}
CL_{cs}	雪が雲水を衝突併合する成長速度		s^{-1}
CL_{rg}	霰が雨水を衝突併合する成長速度		s^{-1}
CL_{rs}	雪が雨水を衝突併合する成長速度		s^{-1}
$CL_{iq}^{'}$	霰が湿潤成長するとき霰が雲氷を衝突併合する成長速度		s^{-1}
$CL_{sq}^{'}$	霰が湿潤成長するとき霰が雪を衝突併合する成長速度		s^{-1}
PG_{wet}	霰の湿潤成長速度		s^{-1}
T	温度		Κ
T_0	氷の融点	273.16	Κ

水滴の分裂

雨水はある程度以上(球相当の直径で8mm)大きくなると不安定になり分裂することが知られている。こ のため自然界ではそれ以上の大きな水滴が降ってくることはない。この水滴の分裂は雨水の混合比を変える ことはないが、その数濃度を変化させる。しかし、このモデルでは雨水の数濃度を予報しないので、このプ ロセスは考慮しない。

このように水滴の分裂を考慮しない場合には、雨水が際限なく大きくなるのを避けるために、粒径分布を 表す逆指数関数の傾き λ_r の制限値を設定する必要がある。

4.2.5 湿潤飽和調節法

先にも述べたとおり、水蒸気と雲水の間の交換には湿潤飽和調節法³¹を用いる。それは、以下のような方 法である。

調節をする前までの暫定的な量を*付きで表し、水に対する過飽和混合比、

$$\Delta q_c = q_v^* - q_{vsw}^* \tag{4.152}$$

が $\Delta q_c > 0$ 、または、雲水量が $q_c^* > 0$ ならば、

$$\theta^{t+\Delta t} = \theta^* + \gamma \left(q_v^* - q_{vsw}^* \right) \left/ \left(1 + \gamma \frac{\partial q_{vsw}^*}{\partial \theta^*} \right) \right.$$
(4.153)

$$q_v^{t+\Delta t} = q_v^* + \left(\theta^* - \theta^{t+\Delta t}\right) / \gamma \tag{4.154}$$

$$q_c^{t+\Delta t} = q_v^* + q_c^* - q_v^{t+\Delta t} \tag{4.155}$$

を用いて θ , q_v , q_c の暫定的な値を求めておく。もし $q_c^{t+\Delta t} > 0$ ならば、暫定的に求まった値を*付きのもの に置き換え、上式 (4.153)~(4.155) を値が収束するまで繰り返し適用する。普通、高々数回繰り返せば収束 し、調節後の値が求められる。ここで、 $\gamma \equiv \mathcal{L}_v/(C_p \Pi)$ である。

なお、 $q_c^{t+\Delta t} \leq 0$ の場合には、

$$\theta^{t+\Delta t} = \theta^* - \gamma q_c^* \tag{4.156}$$

$$q_v^{t+\Delta t} = q_v^* + q_c^* \tag{4.157}$$

$$q_c^{t+\Delta t} = 0 \tag{4.158}$$

とし、繰り返しを中止する。

ここで用いられた記号の意味は、以下のとおりである。

C_p	乾燥空気の定圧比熱	1004	$\rm J~K~kg^{-1}$
\mathcal{L}_v	水の蒸発の潜熱		$\rm J~kg^{-1}$
q_{vsw}	水に対する飽和混合比		$\rm kg \ kg^{-1}$
Π	エクスナー関数		

4.2.6 沈降(降水)による混合比・数密度の変化項の定式化

雲粒子・降水粒子の落下による混合比の変化率は、

$$\text{Fall.}q_x = \frac{1}{\bar{\rho}} \frac{\partial \bar{\rho} \bar{U}_{xq} q_x}{\partial z} \tag{4.159}$$

で与えられる。ここで、質量の重みをかけたカテゴリーxの終端落下速度 \overline{U}_{xq} は、(4.68)で与えられる。また、数密度の変化率は、

$$\operatorname{Fall.}\frac{N_x}{\bar{\rho}} = \frac{1}{\bar{\rho}} \frac{\partial N_x \bar{U}_{xN}}{\partial z}$$
(4.160)

で与えられる。ここで、カテゴリーxの粒子の平均の落下速度 \bar{U}_{xN} は、同様に、(4.67)で与えられる。

さて、鉛直方向の格子間隔が小さい場合には注意が必要である。もし、落下速度の CFL 条件から求められた時間方向の差分間隔 Δt_{lim} 、

$$\Delta t_{lim} = \frac{\Delta z}{\bar{U}_{xq}} \tag{4.161}$$

が、中点蛙飛び法による時間間隔 2∆t より小さい場合には、

$$\Delta t_{fall} = \frac{2\Delta t}{\operatorname{int} (2\Delta t / \Delta t_{lim}) + 1}, \qquad \text{int は括弧内の数の少数点以下切り捨て}$$
(4.162)

として、十分に CFL 条件を満たすように、降水粒子の落下が1タイムステップの間に次の格子をこえてしま わないように時間方向の差分間隔を細かく取らなければならない。

なお、鉛直方向の微分は実空間での微分であるので、z*系(ζ系)での微分にはメトリックがかかる。

4.2.7 さまざまな物理量

ここでは、今までの説明の中で暗に使用していながら計算方法を示していない、水や空気についての物理 諸量を列挙する。

水飽和混合比・氷飽和混合比: q_{vsw}, q_{vsi}^{32}

$$q_{vsw} = \epsilon \frac{610.78}{p} \exp\left(17.269 \frac{T - T_0}{T - 35.86}\right) \qquad [\text{kg kg}^{-1}]$$
(4.163)

$$q_{vsi} = \epsilon \frac{610.78}{p} \exp\left(21.875 \frac{T - T_0}{T - 7.86}\right) \qquad [\text{kg kg}^{-1}]$$
(4.164)

³²Orville and Kopp (1977), Murray (1966)

水の蒸発・昇華・融解の潜熱 : $\mathcal{L}_v, \mathcal{L}_s, \mathcal{L}_f$

$$\mathcal{L}_{v} = 2.50078 \times 10^{6} \left(\frac{T_{0}}{T}\right)^{\left(0.167 + 3.67 \times 10^{-4}T\right)} \qquad [\text{J kg}^{-1}] \tag{4.165}$$

$$\mathcal{L}_s = 2.834 \times 10^6 + 100 \left(T - T_0 \right) \qquad [J \text{ kg}^{-1}] \qquad (4.166)$$

$$\mathcal{L}_f = 3.34 \times 10^5 + 2500 \, (T - T_0) \qquad \qquad [\text{J kg}^{-1}] \qquad (4.167)$$

空気の動粘性係数・粘性係数: ν, μ

$$\nu = 1.328 \times 10^{-5} \frac{p_0}{p} \left(\frac{T}{T_0}\right)^{1.754} \qquad [\text{m}^2 \text{ s}^{-1}]$$
(4.168)

$$\mu = \rho \nu \qquad [\text{kg m}^{-1} \text{ s}^{-1}] \qquad (4.169)$$

水蒸気の拡散係数 : \mathcal{D}_v

$$\mathcal{D}_{v} = 2.23 \times 10^{-5} \frac{p_{0}}{p} \left(\frac{T}{T_{0}}\right)^{1.81} \qquad [\mathrm{m}^{2} \mathrm{s}^{-1}]$$
(4.170)

ここで用いられた記号の意味は、以下のとおりである。

			_
p	気圧		Pa
p_0	基準気圧	101325	Pa
T	温度		Κ
T_0	氷の融点	273.16	Κ
ϵ	水蒸気と乾燥空気の分子量の比	0.622	
ho	空気の密度		$\rm kg~m^{-3}$